
Wisteria: Nurturing Scalable Data Cleaning Infrastructure

Daniel Haas, Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Eugene Wu †∗
UC Berkeley †Columbia University

{dhaas,sanjay,jnwang,franklin}@cs.berkeley.edu, ewu@cs.columbia.edu

ABSTRACT
Analysts report spending upwards of 80% of their time on problems
in data cleaning. The data cleaning process is inherently iterative,
with evolving cleaning workflows that start with basic exploratory
data analysis on small samples of dirty data, then refine analysis
with more sophisticated/expensive cleaning operators (i.e., crowd-
sourcing), and finally apply the insights to a full dataset. While an
analyst often knows at a logical level what operations need to be
done, they often have to manage a large search space of physical
operators and parameters. We present Wisteria, a system designed
to support the iterative development and optimization of data clean-
ing workflows, especially ones that utilize the crowd. Wisteria
separates logical operations from physical implementations, and
driven by analyst feedback, suggests optimizations and/or replace-
ments to the analyst’s choice of physical implementation. We high-
light research challenges in sampling, in-flight operator replace-
ment, and crowdsourcing. We overview the system architecture and
these techniques, then propose a demonstration designed to show-
case how Wisteria can improve iterative data analysis and cleaning.
The code is available at: http://www.sampleclean.org.

1. INTRODUCTION
The prevalence of dirty data presents a fundamental obstacle to

modern data-driven applications, since blindly using results that
are derived from dirty data can lead to hidden, yet significant er-
rors. Analysts report spending upwards of 80% of their time on
problems in data cleaning [9] including error diagnosis, instance-
specific cleaning scripts, and managing large data ingest pipelines.
The underlying problem is that data cleaning is often specific to the
domain, dataset, and eventual analysis. The analyst is faced with a
breadth of possible errors that are manifest in the data and a variety
of options to clean it. She must go through the cleaning process via
trial and error, deciding for each of her data sources what to extract,
how to clean it, and whether that cleaning will significantly change
results.

Data cleaning is inherently iterative and Figure 1 shows a com-
mon progression for the development of a data cleaning plan, in
∗Work conducted while visiting UC Berkeley

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: Example iterations on the design of the portion of a
cleaning plan that extracts restaurant addresses from their un-
structured webpages. 1) An exploratory plan that uses a sample
to evaluate a simple address extraction method. 2) A plan that
applies the method to the entire dataset. The quality is unsat-
isfactory. 3) An alternate plan that uses manual crowd extrac-
tion. The quality is now high, but the crowd-based extractor is
slow. 4) A hybrid plan that sends only difficult webpages to the
crowd, maximizing accuracy without sacrificing latency.
this case the extraction of a restaurant’s address from its unstruc-
tured webpage. While this operation can easily be represented at a
logical level by its input and output schema, there is a huge space of
possible physical implementations of the logical operator. For ex-
ample, extraction could be rule-based, rely on structured learning,
ask crowd workers to extract the desired data fields, or some com-
bination of all three. Even after selecting (say) a crowd-based oper-
ator, many parameters might influence the quality of the output data
or the speed and cost of cleaning it: the number of crowd workers
who vote on the extraction for a given webpage, the amount each
worker is paid, etc. A priori, a data analyst has little intuition for
what physical plan will be optimal in this large space.

For the motivating example in Figure 1, the analyst will likely
start by sampling the data, applying a simple method such as a
rule-based approach, and querying the output to get a sense of the
method’s effectiveness (Figure 1.1). If the approach seems promis-
ing, she will apply the method to the entire dataset (Figure 1.2).
However, the initially attempted approach seldom yields the de-
sired accuracy, so the data analyst might have to experiment with
other physical operators, for example a crowd operator that uses
human workers to manually perform the extraction (Figure 1.3).
Making the decision to switch to a crowd operator is complex as
while the crowd might improve accuracy, it is more costly and time-
consuming. Ideally, to achieve the desired accuracy without sacri-
ficing speed, the data analyst use a hybrid between crowds and au-
tomated techniques (Figure 1.4). In the evolution of this data clean-
ing plan, our data analyst needs to make many decisions about the
choice of physical operators by reasoning about their latency, accu-
racy, and cost. Without a general, scalable, and interactive system

that supports rapid iteration on candidate cleaning plans, analysts
have to manually construct a physical plan and making the wrong
decision, for example using the crowd when it only marginally im-
proves accuracy, can be very costly.

However, no existing systems address the end-to-end iterative
data cleaning process described above. Extract-transform-load
(ETL) systems [1–3] require developers to manually write data
cleaning rules and execute them as long batch jobs, and constraint-
driven tools allow analysts to define “data quality rules" and auto-
matically propose corrections to maximally satisfy these rules [6].
Unfortunately, neither provide the opportunity for iteration or user
feedback, inhibiting the user’s ability to rapidly prototype differ-
ent data cleaning solutions. Projects such as Wrangler [4,8] and
OpenRefine [14] support iteration with spreadsheet-style interfaces
that enable the user to compose data cleaning sequences by directly
manipulating a sample of the data and applying these sequences
to the full dataset. However, they are limited to specific cleaning
tasks such as simple text transformations, do not support crowd-
based processing at scale, and cannot incorporate user feedback
to optimize the physical implementation of the data cleaning se-
quences. Crowd-based [7,12] systems have been proposed to re-
lieve the data cleaning analyst of the burden of rule specification
or manual cleaning, but are usually very task specific (e.g., de-
duplication [5,7,10,11]) and require analysts to awkwardly chain
systems together to execute the entire cleaning workflow, prevent-
ing end-to-end optimization of the entire plan. These existing lim-
itations suggest the need for a system that is general enough to
adapt to a wide range of data cleaning applications, scales to large
datasets, and natively supports fast-feedback interactions to enable
rapid data cleaning iteration.

In this paper, we introduce Wisteria, a system designed to sup-
port the iterative development and optimization of data cleaning
plans end to end. Wisteria allows users to specify declarative data
cleaning plans composed of rule-based, learning-based, or crowd-
based operators, then enabling rapid iteration on plans with cost-
aware recommendations for improving the accuracy or latency of
a plan by swapping in new physical operators or modifying their
parameters. Early, exploratory plans are supported with sampling
and approximate query processing techniques [15]. Wisteria addi-
tionally provides users with the opportunity to provide ground-truth
feedback after each logical operator in the plan to improve recom-
mendations, and supports adjusting in-flight plans efficiently using
caching and tuple lineage.

Supporting these capabilities requires a combination of careful
engineering as well as tackling several research challenges:

• Sampling: We provide sampling as a first-class logical operator
for data cleaning plans that tolerate approximation, and use it to
speed up iteration on early-stage plans.

• Recommendation: We leverage interactive user feedback to rec-
ommend cost-aware changes to in-flight cleaning plans that al-
low users to trade off accuracy and latency, and provide efficient
mechanisms for implementing recommended changes without re-
executing the plan on already cleaned tuples.

• Crowd Latency: We leverage techniques for straggler mitiga-
tion [13] and model crowd worker speed and accuracy to reduce
the (often rate-limiting) latency of crowd data cleaning, consis-
tently retrieving results in seconds rather than hours.

In our demonstration, we will run an entity resolution plan on
two restaurant datasets, and show how Wisteria can be used to 1)
specify and execute a data cleaning plan using our domain specific
language, 2) quickly clean a sample to characterize how a plan is

Figure 2: Wisteria system architecture, with an example entity
resolution plan.
performing, 3) observe that cleaning plans are not necessarily op-
timal across datasets, and 4) incrementally refine the plan to fit a
new dataset by changing an operator’s parameter (e.g., similarity
threshold) or its physical implementation. The fourth interaction
lets the participants inspect the effects of different physical plans.
Users can then execute a plan over a live crowd that uses the audi-
ence as workers, or a simulated crowd that uses pre-collected crowd
responses. The dashboard (Figure 4) also provides a live inspection
interface to view the status of the cleaning plan as it executes.

2. SYSTEM ARCHITECTURE
In this section, we provide a brief overview of the Wisteria sys-

tem and its APIs. Figure 2 depicts the system architecture.

2.1 Architecture Overview
The Wisteria architecture provides UI, language, and systems

tools for building data cleaning plans. Users interact with the
system through the Planning UI, which allows them to compose
data cleaning workflows from modular operators. These workflows
are represented as expressions in our data cleaning language (sec-
tion 2.2), then synthesized as data cleaning plans by our DSL com-
piler. As the Data Cleaning Plan Executor executes the compiled
plans, users can interact with the plans via tight feedback loops in
two ways. First, users can issue queries to the SAQP module and
observe approximate results based on the data that has been cleaned
thus far. Second, the Recommendation Engine displays a set of
suggested modifications to the active cleaning plan (for example,
making a similarity join more permissive) in the Planning UI, and
users can update the data cleaning plan in-flight by accepting a sug-
gestion and using the Hot Swapper to modify components of the
pipeline. Intermediate results and cleaned data are maintained in a
Lineage and Storage engine that tracks each tuple’s lineage in or-
der to enforce the semantics of hot-swapping correctly on in-flight
tuples. Logical cleaning operators may have a number of physical
implementations (section 2.3). Automated rule-based or learning-
based operators leverage Spark and MLLib for efficient distributed
computation, and operators that require human intervention call out
to Wisteria’s Crowd Manager API, which renders data cleaning
tasks and displays them to crowd workers from multiple crowds
(e.g., Amazon Mechanical Turk) in a web-based Cleaning UI for
processing.

2.2 Cleaning DSL
We provide a language for specifying the composition of data

cleaning operators. The logical operators define the input and out-
put behavior of the operation and the physical operators specify the
implementation. The general syntax of this language is:

<logical operator> on <relations>

with <physical operators> , <params>

These expressions are composable. For example, the following
represents the data cleaning plan in Figure 2 (an entity resolution
plan):

Filtering on (
SimilartyJoin on (

Sampling on BaseTable
with Uniform)

with Jaccard, thresh=0.8)
with CrowdDeduplication, numVotes=3

Additionally, Wisteria provides integration of our DSL with
Scala/Apache Spark, allowing SchemaRDDs (Spark RDDs with
additional schema information) to serve as base tables in expres-
sions.

2.3 Cleaning Operators
Wisteria supports a small set of operators that can express a

wide variety of common data cleaning workflows. For example,
the pipeline depicted in Figure 2 performs crowd-based entity res-
olution: the similarity join operator generates candidate tuple pairs
(the blocking step), and the crowd-based filter operator uses hu-
mans to identify duplicates from the candidates (the matching step).
Additional operators include Extraction and Sampling.

Individual logical operators have multiple physical implementa-
tions, each with its own cost, latency, and accuracy profile. For ex-
ample, crowd-based implementations tend to be high cost, high la-
tency, and high accuracy, whereas rule-based implementations tend
to be low cost, low latency, and low accuracy. The with clause
of our data cleaning language allows users to explicitly specify de-
sired physical operators, and Wisteria’s recommendation engine
provides actionable suggestions for modifying the pipeline to nav-
igate the tradeoff space.

3. RESEARCH CHALLENGES
To support evolving data quality needs, there are three main re-

search challenges in Wisteria: (1) sampling, (2) recommendation,
and (3) crowd sourcing.

3.1 Sampling
In prior work, we explored the problem of estimating aggregate

query results over dirty data [15]. In SampleClean [15], we found
that aggregate queries can often be answered with very high accu-
racy (i.e 99%) with only a small fraction of clean data, and we can
clean just enough for the application’s data quality requirements.
In the context of the iterative design, data analysts often run ag-
gregate queries, e.g., count the number of Chinese restaurants, on
a new data source to assess the quality of the data. In Wisteria,
we implement sampling as a logical operator that can be used for
quickly prototyping and optimizing workflows on samples of data
and then transferring these optimizations to full datasets. There are
many additional research opportunities with sampling. For exam-
ple, sampling allows for quick introspection of otherwise opaque
operators, such as testing the quality of a crowd with a small set
of records. We also build a significance testing framework to allow
users to declare aggregate queries of interest and notify them when
a change to a plan has a statistically significant effect.

3.2 Recommendation
Our next research challenge is to recommend changes to a data

cleaning plan based on user feedback. The user can inspect the out-
put of an operator and identify result tuples that are incorrect. This
feedback is operator specific. For example, in a Similarity Join
the user can mark false positives (matched pairs that should not be

similar) and false negatives (unmatched similar pairs) and in an Ex-
traction the user can mark incorrect attribute values. We highlight
two key challenges: generating recommendations and applying the
recommendations mid-execution.
Recommendations: There are three types of recommendations:
(1) parameter change, (2) operator replacement, and (3) operator
addition.

Parameter Change. Many of the physical operators in Wiste-
ria have tunable parameters, whose values is often very dataset-
specific, and the user feedback gives us a way to evaluate the qual-
ity of the initial parameter choice. For example, Similarity Joins
have a similarity threshold and a similarity function. Increasing this
threshold reduces the selectivity of the join, and Wisteria chooses
a threshold that maximizes the F1-score.

Operator Replacement. Wisteria recommends changes to these
physical operators when the user indicates that they are not satis-
fied with the output. For example, we can use the user feedback
as training examples in our learners as an estimate of the crowd
performance. This allows us to estimate the value of replacing the
physical operator with an active learning variant. Additionally, we
can try different variants of automated operators to test how accu-
rate they are with respect to the user feedback.

Operator Addition. There are also cases where we may want
to add another physical operator, while still preserving the logical
input-output behavior of the workflow. It is common in extraction
tasks to have most records accurately extracted with an automated
extractor but only a small subset requiring additional inspection.
For these cases, we can add a crowd-based Filter operator to sepa-
rate these examples for additional cleaning.

Dynamic Modification: To be able to quickly modify cleaning
plans after recommendations, we explore ways to intelligently re-
use computation. Because cleaning can be time-consuming, it is
inefficient to restart the plan every time the user wants to make
a small change. We design a framework for hot swapping plan
operators that re-uses existing results while ensuring that the output
of the swapped plan is the same as if the new plan had been run
from the start.

Caching allows for result re-use if a downstream operator is
modified or added. If the system has sufficient memory, then we
can cache all of the intermediate results. However this is not al-
ways possible, and the key challenge is to select which results to
cache. To do this, we have to integrate the caching framework with
our recommendation engine. When we make a recommendation
for a change, we must cache the preceding operator.

Lineage allows us to understand how results change if upstream
operators are modified. For example, decreasing a similarity join
threshold increases the number of output pairs, but adding an addi-
tional filtering step reduces the number of output tuples. The key
property here is monotonicity, and some types of monotone Filter
and SimilarityJoin are data cleaning analogs for a Select-Join re-
lational algebra. We can therefore model upstream hot-swapping
as an incremental view maintenance problem and update the final
result based on the insertion or deletion of tuples earlier in the plan.

3.3 Crowdsourcing
Working with crowds is inherently challenging: unlike with au-

tomated operators, the accuracy and speed of processing each tu-
ple varies widely with the crowd worker assigned to it. Comple-
tion time of an operator depends on the response times of individ-
ual workers, and on real-world crowdsourcing platforms, the dis-
tribution of response latencies is highly skewed; analogous to the
straggler problem in distributed systems. We address this problem
by maintaining a pool of high-speed, high-quality crowd workers

Figure 3: The dashboard contains both a visual interface and a
text box to specify data cleaning operations. When the user is
satisfied, she can run the plan and see the results on the right.

Figure 4: The operator view lists the parameters of an operator.
Users can view recommended changes and modify parameters
on the fly.
and develop task routing strategies that can avoid assigning tasks to
slow workers and leverage redundancy to significantly reduce the
time that is required to clean data with the crowd. Additionally,
active learning techniques reduce the number of tuples that require
crowd work to clean the data. Another challenge with crowd oper-
ators is that some workers may give inccorect responses. We mod-
ify state-of-the-art quality control techniques for the active learn-
ing setting using redundancy and Expectation-Maximization based
voting algorithms.

4. DEMONSTRATION
In this section, we detail the proposed demonstration. The objec-

tive of this demonstration is to illustrate how Wisteria enables the
rapid iterative construction of data cleaning plans and the ability to
transfer workflows between similar dirty datasets.

4.1 Datasets
In our demo, we will consider entity resolution tasks on two

different restaurant datasets. The first dataset contains 858 Zagat
reviews1, each tagged with the cuisine of the restaurant reviewed
(e.g. “Chinese" or “French"). The second dataset is from Yelp and
contains 58,127 restaurant records that are also tagged with a cat-
egory. In both datasets, tags are inconsistent across records, e.g.
“Chinese" vs. “Chinese Cuisine". We will use Wisteria to merge
similar categories together and find the top 10 most popular cate-
gories in the dataset.

4.2 Demo Walkthrough
Now, we will detail the steps of the proposed demonstration. A

screenshot of our dashboard interface is illustrated in Figure 3.
Step 1: We will explain the components of our dashboard interface
to the demo participants, including how to design data cleaning
1

www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.
gz

plans with the visual drop down menus, how to compile those plans
to our DSL, and how to evaluate the results.
Step 2: Our dashboard will be pre-populated with a data clean-
ing plan for tag deduplication, and will start off with the Zagat
restaurant dataset. Participants will have the option of choosing
one of two Similarity Join implementations, Edit Distance and Jac-
card Similarity, and can tune the thresholds for either. Participants
can also add a crowdsourced filtering step in addition to similarity
thresholding.
Step 3: When a participant is satisfied with a plan, they can hit
“Approve" to execute the data cleaning. If they chose to use crowd-
sourcing, then they can complete crowd tasks. The results of the
plan are visualized in the upper right of our interface. We show a
representative sample of changed records allowing the participant
to understand how cleaning affects the data. Participants can fur-
ther analyze their plan by clicking on an operator (Figure 4). In
addition to the parameters, this shows the recommended changes
to the operator. For example, Figure 4, shows a recommendation
to change the similarity metric from Jaccard to Edit Distance since
the attribute in question does not have many tokens.
Step 4: Participants can then switch datasets and observe how the
same plan performs on another dataset. They can modify the plan
using the visual interface until the results are satisfactory.

5. REFERENCES
[1] Apache falcon. http://falcon.apache.org.
[2] Informatica. https://www.informatica.com.
[3] Talend. https:

//www.talend.com/solutions/etl-analytics.
[4] Trifacta. http://www.trifacta.com.
[5] Z. Chen and M. Cafarella. Integrating spreadsheet data via accurate

and low-effort extraction. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 1126–1135. ACM, 2014.

[6] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas,
M. Ouzzani, and N. Tang. Nadeef: a commodity data cleaning
system. In SIGMOD Conference, pages 541–552, 2013.

[7] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli,
J. Shavlik, and X. Zhu. Corleone: Hands-off crowdsourcing for entity
matching. In SIGMOD, 2014.

[8] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
interactive visual specification of data transformation scripts. In CHI,
pages 3363–3372, 2011.

[9] S. Kandel, A. Paepcke, J. Hellerstein, and H. Jeffrey. Enterprise data
analysis and visualization: An interview study. VAST, 2012.

[10] C. Mayfield, J. Neville, and S. Prabhakar. Eracer: a database
approach for statistical inference and data cleaning. In SIGMOD,
2010.

[11] H. Park and J. Widom. Crowdfill: Collecting structured data from the
crowd. In SIGMOD, 2014.

[12] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack,
S. B. Zdonik, A. Pagan, and S. Xu. Data curation at scale: The data
tamer system. In CIDR, 2013.

[13] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin,
and I. Stoica. The power of choice in data-aware cluster scheduling.
In Proceedings of the 11th USENIX conference on Operating
Systems Design and Implementation, pages 301–316. USENIX
Association, 2014.

[14] R. Verborgh and M. De Wilde. Using OpenRefine. Packt Publishing
Ltd, 2013.

[15] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and
T. Milo. A sample-and-clean framework for fast and accurate query
processing on dirty data. In SIGMOD Conference, pages 469–480,
2014.

