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ABSTRACT
The World-Wide Web consists of a huge number of unstruc-
tured documents, but it also contains structured data in the
form of HTML tables. We extracted 14.1 billion HTML ta-
bles from Google’s general-purpose web crawl, and used sta-
tistical classification techniques to find the estimated 154M
that contain high-quality relational data. Because each re-
lational table has its own “schema” of labeled and typed
columns, each such table can be considered a small struc-
tured database. The resulting corpus of databases is larger
than any other corpus we are aware of, by at least five orders
of magnitude.

We describe the WebTables system to explore two fun-
damental questions about this collection of databases. First,
what are effective techniques for searching for structured
data at search-engine scales? Second, what additional power
can be derived by analyzing such a huge corpus?

First, we develop new techniques for keyword search over
a corpus of tables, and show that they can achieve substan-
tially higher relevance than solutions based on a traditional
search engine. Second, we introduce a new object derived
from the database corpus: the attribute correlation statistics

database (AcsDB) that records corpus-wide statistics on co-
occurrences of schema elements. In addition to improving
search relevance, the AcsDB makes possible several novel
applications: schema auto-complete, which helps a database
designer to choose schema elements; attribute synonym find-

ing, which automatically computes attribute synonym pairs
for schema matching; and join-graph traversal, which al-
lows a user to navigate between extracted schemas using
automatically-generated join links.
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1. INTRODUCTION
The Web is traditionally modelled as a corpus of unstruc-

tured documents. Some structure is imposed by hierarchical
URL names and the hyperlink graph, but the basic unit
for reading or processing is the unstructured document it-
self. However, Web documents often contain large amounts
of relational data. For example, the Web page shown in
Figure 1 contains a table that lists American presidents1.
The table has four columns, each with a domain-specific la-
bel and type (e.g., President is a person name, Term as
President is a date range, etc) and there is a tuple of data
for each row. This Web page essentially contains a small
relational database, even if it lacks the explicit metadata
traditionally associated with a database.

We extracted approximately 14.1 billion raw HTML ta-
bles from the English documents in Google’s main index,
and used a series of techniques to recover those tables that
are high-quality relations [6]. Recovery involves filtering out
tables that are used for page layout or other non-relational
reasons, and detecting labels for attribute columns. We es-
timate that the tested portion of our general web crawl con-
tains 154M distinct relational databases - a huge number,
even though it is just slightly more than 1.1% of raw HTML
tables.

Previous work on HTML tables focused on the problem of
recognizing good tables or extracting additional information
from individual tables [27, 30, 32]. In this paper we consider
a corpus of tables that is five orders of magnitude larger
than the largest one considered to date [27], and address
two fundamental questions: (1) what are effective methods
for searching within such a collection of tables, and (2) is
there additional power that can be derived by analyzing such
a huge corpus? We describe the WebTables system that
explores these questions.

The main motivation for searching such a corpus of ta-
bles is to enable analysis and integration of data on the

1
http://www.enchantedlearning.com/history/us/pres/list.shtml



Figure 1: A typical use of the table tag to describe
relational data. The relation here has a schema that
is never explicitly declared but is obvious to a hu-
man observer, consisting of several typed and la-
beled columns. The navigation bars at the top of
the page are also implemented using the table tag,
but clearly do not contain relational-style data. The
automatically-chosen WebTables corpus consists of
41% true relations, and contains 81% of the true re-
lations in our crawl. (The raw HTML table corpus
consists of 1.1% true relations.)

Web. In particular, there is a recent flurry of tools for vi-
sualizing structured data and creating mashups on the Web
(e.g., many-eyes.com swivel.com, Yahoo Pipes, Microsoft
Popfly). Users of such tools often search the Web for good
tabular data in a variety of domains. In addition, while
searches for structured data may account for only a small
fraction of general web searches, a scan over a 1-day log of
Google’s queries revealed that for close to 30 million queries,
users clicked on results that contained tables from our fil-
tered relational corpus, which is quite substantial.

Document search engines are commonplace, and researchers
have studied the problem of keyword ranking for individual
tuples within a database [2, 15]. However, to perform rela-
tion ranking, i.e., to sort relations by relevance in response
to a user’s keyword search query, WebTables must solve
the new problem of ranking millions of individual databases,
each with a separate schema and set of tuples. Relation
ranking poses a number of difficulties beyond web docu-
ment ranking: relations contain a mixture of “structural”
and related “content” elements with no analogue in unstruc-
tured text; relations lack the incoming hyperlink anchor text
that helps traditional search; and PageRank-style metrics
for page quality are useless when tables of widely-varying
quality can be found on the same web page. Finally, rela-
tions contain text in two dimensions and so many cannot be
efficiently queried using the standard inverted index.

We describe a ranking method that combines table-structure-
aware features (made possible by the index) with a novel
query-independent table coherency score that makes use of
corpus-wide schema statistics. We show that this approach
gives an 85-98% improvement in search quality over a näıve
approach based on traditional search engines.

To validate the power of WebTables’s corpus, we de-
scribe the attribute correlation statistics database, (ACSDb),
which is a set of statistics about schemas in the corpus. In

addition to improving WebTables’s ranking, we show that
we can leverage the ACSDb to offer unique solutions to
schema-level tasks. First, we describe an algorithm that
uses the ACSDb to provide a schema auto-complete tool
to help database designers choose a schema. For example, if
the designer inputs the attribute stock-symbol, the schema
auto-complete tool will suggest company, rank, and sales
as additional attributes. Unlike set-completion (e.g., Google
Sets) that has been investigated in the past, schema auto-
complete looks for attributes that tend to appear in the same
schema (i.e., horizontal completion).

Second, we use the ACSDb to develop an attribute syn-

onym finding tool that automatically computes pairs of schema
attributes that appear to be used synonymously. Synonym
finding has been considered in the past for text documents [16],
but finding synonyms among database attributes comprises
a number of novel problems. First, databases use many at-
tribute labels that are nonexistent or exceedingly rare in
natural language, such as abbreviations (e.g., hr for home
run) or non-alphabetic sequences (e.g., tel-#); we cannot
expect to find these attributes in either thesauri or natu-
ral text. Second, the context in which an attribute appears
strongly affects its meaning; for example, name and filename

are synonymous, but only when name is in the presence of
other file-related attributes. If name is used in the setting
of an address book, it means something quite different. In-
deed, two instances of name will only be synonymous if their
co-attributes come from the same domain. We give an algo-
rithm that automatically detects synonymy with extremely
high accuracy. For example, our synonym-finder takes an
input domain and gives an average of four correct synonym
pairs in its first five emitted pairs.

Finally, we show how to use the ACSDb for join-graph

traversal. This tool can be used to build a “schema ex-
plorer” of the massive WebTables corpus that would again
be useful for database designers. The user should be able to
navigate from schema to schema using relational-style join
links (as opposed to standard hypertext links that connected
related documents).

Our extracted tables lack explicit join information, but we
can create an approximation by connecting all schemas that
share a common attribute label. Unfortunately, the result-
ing graph is hugely “busy”; a single schema with just two
or three attributes can link to thousands of other schemas.
Thus, our set of schemas is either completely disconnected
(in its original state) or overly-connected (if we synthesize
links between attribute-sharing schemas). It would be more
useful to have a graph with a modest number of meaningful
links. To address this problem, we introduce an ACSDb-
based method that clusters together related schema neigh-
bors.

All of the above tools are examples of how web-scale data
can be used to solve problems that are otherwise very hard.
They are similar in spirit to recent efforts on machine trans-
lation [4] and spell-correction that leverage huge amounts
of data. The distinguishing feature of the ACSDb is that
it is the first time such large statistics have been collected
for structured data schema design. We note that the idea
of leveraging a large number of schemas was initially pro-
posed in [17] for the improving schema matching. Our work
is distinguished in that we consider a corpus that is sev-
eral orders of magnitude larger, and we leverage the corpus
more broadly. Our synonym finder can be used for schema



matching, but we do not explore that here.
Before we proceed, we distinguish between the data we

manage with WebTables and the deep web. The WebTa-

bles system considers HTML tables that are already sur-
faced and crawlable. The deep web refers to content that is
made available through filling HTML forms. The two sets
of data overlap, but neither contains the other. There are
many HTML tables that are not behind forms (only about
40% of the URLs in our corpus are parameterized), and
while some deep-web data is crawlable, the vast majority
of it is not (or at least requires special techniques, such as
those described in [14]). In contrast to the work we describe
in this paper, deep web research questions focus on identi-
fying high quality forms and automatically figuring out how
to query them in a semantically meaningful fashion. In ad-
dition to HTML tables and the deep web, there are many
kinds of structure on the Web, including tagged items, on-
tologies, XML documents, spreadsheets, and even extracted
language parses [19]. In this paper we will only consider the
table tag.

This paper focuses on the extracted table corpus, how
to provide search-engine-style access to this huge volume of
structured data, and on the ACSDb and its applications.
We do not study how to match or integrate the table data,
though we have done so elsewhere [6].

The remainder of this paper is organized as follows. Sec-
tion 2 describe our basic model and the ACSDb. In Sec-
tion 3, we describe how to rank tables in response to key-
word query on WebTables. Section 4 covers our three novel
ACSDb applications: schema auto-complete, attribute syn-

onym finding, and join-graph discovery. We present exper-
imental evaluations in Section 5, and conclude with discus-
sions of related and future work (Sections 6 and 7).

2. DATA MODEL
We begin by describing the set of relations we extract from

the web crawl, and the statistics we store in the attribute

correlation statistics database (ACSDb).

2.1 Extracted Relations
The database corpus that is contained within the raw

HTML tables is hugely valuable, containing data drawn from
millions of sites and across a vast array of topics. We wrote
a system, described in [6], that combines hand-written de-
tectors and statistically-trained classifiers to filter good re-
lations from bad ones. There is no strict method for dis-
tinguishing a “truly relational” HTML table from a non-
relational one; we tested our detector’s output on a human-
marked test sample to measure how well it performs. After
filtering out non-relational HTML tables, we used a separate
trained detector to extract any embedded metadata (such
as the first row in the table in Figure 1). The extraction
pipeline is pictured in Figure 2.

We tuned the relation-filter for relatively high recall and
low precision, so that we lose relatively few true relations.
We tuned the metadata-detector to equally weigh recall and
precision. Table 1 summarizes the performance of the ex-
tractor, which yields more than 125M high-quality relations
from our original web crawl. The precision and recall of the
extractor is roughly similar to other domain-independent in-
formation extraction systems (only Relational Filtering pre-
cision is relatively low, but we specifically maximized recall
at the cost of this precision).

Raw Crawled Pages Raw HTML Tables Recovered Relations

Figure 2: The WebTables relation extraction
pipeline. About 1.1% of the raw HTML tables are
true relations.

Relational Filtering

true class Precision Recall

relational 0.41 0.81
non-relational 0.98 0.87

Metadata Detection

true class Precision Recall

has-metadata 0.89 0.85
no-metadata 0.75 0.80

Table 1: A summary of the WebTables relation ex-
tractor’s performance.

As described in [6], the actual extraction process is quite
involved, and is not germane to our current discussion. Here
we simply assume we have a corpus, R, of databases, where
each database is a single relation. For each relation, R ∈ R,
we have the following:

• the url Ru and offset Ri within the page from which
R was extracted. Ru and Ri uniquely define R.

• the schema, RS , which is an ordered list of attribute
labels. For example, the table in Figure 1 has the at-
tributes RS = [President, Party, . . .]. One or more
elements of RS may be empty strings (e.g., if the ta-
ble’s schema cannot be recovered).

• a list of tuples, RT . A tuple t is a list of data strings.
The size of a tuple t is always |RS |, though one or more
elements of t may be empty strings.

In Section 3 we describe how to find relevant tables in
such a huge corpus.

2.2 Attribute Correlation Statistics
The sheer size of our corpus also enables us to compute the

first large-scale statistical analysis of how attribute names
are used in schemas, and to leverage these statistics in var-
ious ways.

The ACSDb lists each unique S found in the set of rela-
tions, along with a count that indicates how many relations
contain the given S . We assume two schemas are identical
if they have the same set of attributes (regardless of their
order). The ACSDb A is a set of pairs of the form (S , c),
where S is a schema of a relation in R, and c is the number
of relations in R that have the schema S .

Extracting the ACSDb given the corpus R of extracted
relations is straightforward, as described below. Note that
the algorithm only counts one schema per domain name,



Figure 3: Distribution of frequency-ordered unique
schemas in the ACSDb, with rank-order on the x-
axis, and schema frequency on the y-axis. Both rank
and frequency axes have a log scale.

so we prevent a single site with many similar pages from
swamping the schema statistics.

Function createACS(R):
A = {}
seenDomains = {}
for all R ∈ R do

if getDomain(R.u) /∈ seenDomains[R.S ] then
seenDomains[R.S ].add(getDomain(R.u))
A[R.S ] = A[R.S ] + 1

end if
end for

After removing all attributes and all schemas that ap-
pear only once in the entire extracted relation corpus, we
computed an ACSDb with 5.4M unique attribute names
and 2.6M unique schemas. Unsurprisingly, a relatively small
number of schemas appear very frequently, while most schemas
are rare (see the distribution of schemas in Figure 3).

The ACSDb is simple, but it critically allows us to com-
pute the probability of seeing various attributes in a schema.
For example, p(address) is simply the sum of all counts c for
pairs whose schema contains address, divided by the total
sum of all counts. We can also detect relationships between
attribute names by conditioning an attribute’s probability
on the presence of a second attribute. For example, we can
compute p(address|name) by counting all the schemas in
which “address” appears along with “name” (and normaliz-
ing by the counts for seeing “name” alone). As we will see
in Sections 3.1 and 4, we can use these simple probabilities
to build several new and useful schema applications.

We next describe the WebTables relation search system,
which uses features derived from both the extracted rela-
tions and from the ACSDb. Afterwards, in Section 4, we
will discuss ACSDb applications that are more broadly ap-
plicable to traditional database tasks. Indeed, we believe
the ACSDb will find many uses beyond those described in
this paper.

3. RELATION SEARCH
Even the largest corpus is useless if we cannot query it.

1: Function naiveRank(q, k):
2: let U = urls from web search for query q
3: for i = 0 to k do
4: emit getRelations(U [i])
5: end for

Figure 5: Function näıveRank: it simply uses the
top k search engine result pages to generate rela-
tions. If there are no relations in the top k search
results, näıveRankwill emit no relations.

1: Function filterRank(q, k):
2: let U = ranked urls from web search for query q
3: let numEmitted = 0
4: for all u ∈ U do
5: for all r ∈ getRelations(u) do
6: if numEmitted >= k then
7: return
8: end if
9: emit r; numEmitted + +

10: end for
11: end for

Figure 6: Function filterRank: similar to näıveRank,
it will go as far down the search engine result pages
as necessary to find k relations.

The WebTables search engine allows users to rank rela-
tions by relevance, with a search-engine-style keyword query
as input. Figure 9 shows the WebTables search system
architecture, with the index of tables split across multiple
back-end servers.

As with a web document search engine, WebTables gen-
erates a list of results (which is usually much longer than
the user wants to examine). Unlike most search engines,
WebTables results pages are actually useful on their own,
even if the user does not navigate away. Figure 4 shows a
sample results page for the query “city population.” The
structured nature of the results allows us to offer search ser-
vices beyond those in a standard search engine.

For example, we can create query-appropriate visualiza-
tions by testing whether the tuples R.T contain a column of
geographic placenames. If so, WebTables will place all of
each tuple’s data at the correct locations on the map (see,
e.g., the “Paris” tuple in Figure 4). If two columns of R.T
contain interesting numerical data, WebTables will suggest
a scatterplot visualization to show the relationship between
the two variables. The user can also manually choose a vi-
sualization. Finally, WebTables search offers traditional
structured operations over search results, such as selection
and projection.

Of course, none of these extensions to the traditional search
application will be useful without good search relevance. In
the section below we present different algorithms for ranking
individual databases in relation to a user’s query. Unfortu-
nately, the traditional inverted text index cannot support
these algorithms efficiently, so in Section 3.2 we also describe
additional index-level support that WebTables requires.

3.1 Ranking
Keyword ranking for documents is well-known and un-

derstood, and there has been substantial published work on
keyword access to traditional relational databases. But key-
word ranking of individual databases is a novel problem,



Figure 4: Results of a WebTables keyword query for “city population”, showing a ranked list of databases.
The top result contains a row for each of the most populous 125 cities, and columns for “City/Urban Area,”
“Country,” “Population,” “rank” (the city’s rank by population among all the cities in the world), etc. The
visualization to the right was generated automatically by WebTables, and shows the result of clicking on the
“Paris” row. The title (“City Mayors. . . ”) links to the page where the original HTML table was found.

1: Function featureRank(q, k):
2: let R = set of all relations extracted from corpus
3: let score(r ∈ R) = combination of per-relation fea-

tures in Table 2
4: sort r ∈ R by score(r)
5: for i = 0 to k do
6: emit R[i]
7: end for

Figure 7: Function featureRank: score each relation
according to the features in Table 2. Rank by that
score and return the top k relations.

largely because no one has previously obtained a corpus of
databases large enough to require search ranking.

Ranking for web-extracted relations poses a unique set
of challenges: relations do not exist in a domain-specific
schema graph, as with relational keyword-access systems
(e.g., DBXplorer[2], DISCOVER [15]), page-level features
like word frequencies apply ambiguously to tables embed-
ded in the page, and even a high-quality page may contain
tables of varying quality (e.g., an incorrectly-extracted non-
relational table). Relations also have special features that
may reveal their subject matter: schema elements should
provide good summaries of the subject matter, tuples may
have a key-like element that summarizes the row, and we
may be able to discern relation quality by looking at the
relation size and the distribution of NULLs.

To rank our extracted WebTables relations, we created
a series of ranking functions of increasing complexity, listed
in Figures 5, 6, 7, and 8. Each of these functions accept as
input a query q and a top-k parameter k. Each invokes the
emit function to return a relation to the user.

The first, näıveRank, simply sends the user’s query to
a search engine and fetches the top-k pages. It returns ex-

tracted relations in the URL order returned by the search
engine. If there is more than one relation extracted per page,
we return it in document-order. If there are fewer than k ex-
tracted relations in these pages, näıveRank will not go any
deeper into the result list. Although very basic, näıveRank
roughly simulates what a modern search engine user must
do when searching for structured data. As we will see in the
experimental results in Section 5.1, using this algorithm to
return search results is not very satisfactory.

Algorithm filterRank is similar to näıveRank, but slightly
more sophisticated. It will march down the search engine
results until it finds k relations to return. The ordering is
the same as with näıveRank. Because search engines may
return many high-ranking pages that contain no relational
data at all, even this basic algorithm can be a large help to
someone performing a relation search.

Figure 7 shows featureRank, the first algorithm that
does not rely on an existing search engine. It uses the
relation-specific features listed in Table 2 to score each ex-
tracted relation in our corpus. It sorts by this score and
returns the top-k results.

We numerically combined the different feature scores us-
ing a linear regression estimator trained on more than a
thousand (q, relation) pairs, each scored by two human judges.
Each judge gave a pair a quality score between 1 and 5. The
features from Table 2 include both query-independent and
query-dependent elements that we imagined might describe
a relevant relation. The two most heavily-weighted features
for the estimator are the number of hits in each relation’s
schema, and the number of hits in each relation’s leftmost
column. The former fits our intuition that attribute labels
are a strong indicator of a relation’s subject matter. The
latter seems to indicate that values in the leftmost column
may act something like a “semantic key,” providing a useful
summary of the contents of a data row.



1: Function cohere(R):
2: totalPMI = 0
3: for all a ∈ attrs(R), b ∈ attrs(R), a 6= b do
4: totalPMI = PMI(a, b)
5: end for
6: return totalPMI/(|R| ∗ (|R| − 1))

1: Function pmi(a, b):

2: return log( p(a,b)
p(a)∗p(b)

)

Figure 8: The coherency score measures how well
attributes of a schema fit together. Probabilities for
individual attributes are derived using statistics in
the ACSDb.

The final algorithm, schemaRank, is the same as fea-
tureRank, except that it also includes the ACSDb-based
schema coherency score, which we now describe. Intuitively,
a coherent schema is one where the attributes are all tightly
related to one another in the ACSDb schema corpus. For
example, a schema that consists of the attributes “make”
and “model” should be considered highly coherent, and “make”
and “zipcode” much less so. The coherency score is defined
formally in Figure 8.

The core of the coherency score is a measure called Point-
wise Mutual Information (or PMI), which is often used in
computational linguistics and web text research, and is de-
signed to give a sense of how strongly two items are re-
lated [9, 12, 25]. PMI will be large and positive when two
variables strongly indicate each other, zero when two vari-
ables are completely independent, and negative when vari-
ables are negatively-correlated. pmi(a, b) requires values for
p(a), p(b), and p(a, b), which in linguistics research are usu-
ally derived from a text corpus. We derive them using the
ACSDb corpus.

The coherency score for a schema s is the average of all
possible attribute-pairwise PMI scores for the schema. By
taking an average across all the PMI scores, we hope to
reward schemas that have highly-correlated attributes, while
not overly-penalizing relations with a single “bad” one.

We will see in Section 5.1 that schemaRank performs
the best of our search algorithms.

To complete our discussion, we now describe the systems-
level support necessary to implement the above algorithms.
Unfortunately, the traditional inverted index cannot support
operations that are very useful for relation ranking.

3.2 Indexing
Traditional search engines use a simple inverted index to

speed up lookups, but the standard index cannot efficiently
retrieve all the features listed in Table 2.

Briefly, the inverted index is a structure that maps each
term to a sorted posting list of (docid, offset) pairs that
describe each occurrence of the term in the corpus. When
the search engine needs to test whether two search terms are
in the same document, it simply steps through the terms’
inverted posting lists in parallel, testing to see where they
share a docid. To test whether two words are adjacent,
the search engine also checks if the words have postings at
adjacent offset values. The offset value may also be useful
in ranking: for example, words that appear near the top of

...
Search Index Servers

WebTable Search Server

User Web Browser

Figure 9: The WebTables search system. The in-
verted table index is segmented by term and divided
among a pool of search index servers. A single front-
end search server accepts the user’s request, trans-
mits it to all of the index servers, and returns a
reply.

# rows
# cols

has-header?
# of NULLs in table

document-search rank of source page
# hits on header

# hits on leftmost column
# hits on second-to-leftmost column

# hits on table body

Table 2: Selected text-derived features used in the
search ranker.

a page may be considered more relevant.
Unlike the “linear text” model that a single offset value

implies, WebTables data exists in two dimensions, and the
ranking function uses both the horizontal and vertical offsets
to compute the input scoring features. Thus, we adorn each
element in the posting list with a two-dimensional (x, y)

offset that describes where in the table the search term can
be found. Using this offset WebTables can compute, for
example, whether a single posting is in the leftmost column,
or the top row, or both.

Interestingly, the user-exposed search query language can
also take advantage of this new index style. WebTables

users can issue queries that include various spatial operators
like samecol and samerow, which will only return results if
the search terms appear in cells in the same column or row of
the table. For example, a user can search for all tables that
include Paris and France on the same row, or for tables
with Paris, London, and Madrid in the same column.

4. ACSDb APPLICATIONS
The ACSDb is a unique dataset that enables several



Input attribute Auto-completer output

name name, size, last-modified, type

instructor instructor, time, title, days, room, course

elected elected, party, district, incumbent, status, opponent, description

ab ab, h, r, bb, so, rbi, avg, lob, hr, pos, batters

stock-symbol stock-symbol, securities, pct-of-portfolio, num-of-shares, mkt-value-of-securities, ratings

company company, location, date, job-summary, miles

director director, title, year, country

album album, artist, title, file, size, length, date/time, year, comment

sqft sqft, price, baths, beds, year, type, lot-sqft, days-on-market, stories

goals goals, assists, points, player, team, gp

Table 3: Ten input attributes, each with the schema generated by the WebTables auto-completer.

Input context Synonym-finder outputs

name e-mail|email, phone|telephone, e-mail address|email address, date|last-modified

instructor course-title|title, day|days, course|course-#, course-name|course-title

elected candidate|name, presiding-officer|speaker

ab k|so, h|hits, avg|ba, name|player

stock-symbol company|company-name, company-name|securities, company|option-price

company phone|telephone, job-summary|job-title, date|posted

director film|title, shares-for|shares-voted-for, shares-for|shared-voted-in-favor

album song|title, song|track, file|song, single|song, song-title|title

sqft bath|baths, list|list-price, bed|beds, price|rent

goals name|player, games|gp, points|pts, club|team, player|player-name

Table 4: Partial result sets from the WebTables synonym-finder, using the same attributes as in Table 3.

novel pieces of database software, applicable beyond the re-
covered relations themselves. In this section we describe
three separate problems, and present an ACSDb-based so-
lution for each. First, we show how to perform schema au-

tocomplete, in which WebTables suggests schema elements
to a database designer. Synonym discovery is useful for pro-
viding synonyms to a schema matching system; these syn-
onyms are more complete than a natural-language thesaurus
would be, and are far less expensive to generate than human-
generated domain-specific synonym sets. Finally, we intro-
duce a system for join-graph traversal that enables users to
effectively browse the massive number of schemas extracted
by the WebTables system.

All of our techniques rely on attribute and schema prob-
abilities derived from the ACSDb. Similar corpus-based
techniques have been used successfully in natural language
processing and information extraction [4, 12, 20]. How-
ever, we are not aware of any similar technique applied
to the structured-data realm, possibly because no previous
database corpus has been large enough.

4.1 Schema Auto-Complete
Inspired by the word and URL auto-complete features

common in word-processors and web browsers, the schema
auto-complete application is designed to assist novice database
users when designing a relational schema. We focus on
schemas consisting of a single relation. The user enters one
or more domain-specific attributes, and the schema auto-
completer guesses the rest of the attribute labels, which
should be appropriate to the target domain. The user may
accept all, some, or none of the auto-completer’s suggested

attributes.
For example, when the user enters make, the system sug-

gests model, year, price, mileage, and color. Table 3
shows ten example input attributes, followed by the output
schemas given by the auto-completer.

We can say that for an input I , the best schema S of
a given size is the one that maximizes p(S − I |I). The
probability of one set of attributes given another set can
be easily computed by counting attribute cooccurrences in
the ACSDb schemas.

It is possible to find a schema using a greedy algorithm
that always chooses the next-most-probable attribute, stop-
ping when the overall schema’s probability goes below a
threshold value. (See Figure 10 for the formal algorithm.)
This approach is not guaranteed to find the maximal schema,
but it does offer good interaction qualities; when proposing
additional attributes, the system never “retracts” previous
attribute suggestions that the user has accepted.

The greedy approach is weakest when dealing with at-
tributes that occupy two or more strongly-separated do-
mains. For example, consider the “name” attribute, which
appears in so many distinct domains (e.g., address books,
file listings, sports rosters) that even the most-probable re-
sponse is not likely to be useful to the end-user, who may
not know her target schema but certainly has a subject area
in mind. In such situations, it might be better to present
several thematic options to the user, as we do in “join graph
traversal” described below in Section 4.3.

4.2 Attribute Synonym-Finding
An important part of schema matching is finding synony-



1: Function SchemaSuggest(I , t):
2: S = I
3: while p(S − I |I) > t do
4: a = maxa∈A−Sp(a,S − I |I)
5: S = S ∪ a
6: return S
7: end while

Figure 10: The SchemaSuggest algorithm repeat-
edly adds elements to S from the overall attribute
set A. We compute attribute probabilities p by ex-
amining counts in the ACSDb (perhaps condition-
ing on another schema attribute). The threshold t
controls how aggressively the algorithm will suggest
additional schema elements; we set t to be 0.01 for
our experiments.

mous column labels. Traditionally, schema-matchers have
used a synonym-set from a hand-made thesaurus [18, 24].
These thesauri are often either burdensome to compile or
contain only natural-language strings (excluding, say, tel-#
or num-employees). The ACSDb allows us to automati-
cally find synonyms between arbitrary attribute strings.

The synonym-finder takes a set of context attributes, C,
as input. It must then compute a list of attribute pairs
P that are likely to be synonymous in schemas that con-
tain C. For example, in the context of attributes album,

artist, the ACSDb synonym-finder outputs song/track.
Of course, our schemas do not include constraints nor any
kind of relationship between attributes other than simple
schema-co-membership.

Our algorithm is based on a few basic observations: first,
that synonymous attributes a and b will never appear to-
gether in the same schema, as it would be useless to dupli-
cate identical columns in a single relation (i.e., it must be
true that the ACSDb-computed probability p(a, b) = 0).
Second, that the odds of synonymity are higher if p(a, b) = 0
despite a large value for p(a)p(b). Finally, we observe that
two synonyms will appear in similar contexts: that is, for a
and b and a third attribute z /∈ C, p(z|a,C) ∼= p(z|b, C).

We can use these observations to describe a syn score for
attributes a, b ∈ A, with context attributes C:

syn(a, b) =
p(a)p(b)

ǫ + Σz∈A(p(z|a,C) − p(z|b, C))2

The value of syn(a, b) will naturally be higher as the nu-
merator probabilities go up and there is a greater “surprise”
with p(a, b) = 0 at the same time that p(a)p(b) is large. Sim-
ilarly, the value of syn(a, b) will be high when the attributes
frequently appear in similar contexts and thereby drive the
denominator lower.

Our SynFind algorithm (see Figure 11) takes a context
C as input, ranks all possible synonym pairs according to
the above formula, and returns pairs with score higher than
a threshold t. Table 4 lists synonyms found by WebTables

for a number of input contexts.

4.3 Join Graph Traversal
The library of schemas extracted by WebTables should

be very helpful to a schema designer looking for advice or ex-
amples of previous work. Unfortunately, there is no explicit
join relationship information in the schemas we extract, so

1: Function SynFind(C, t):
2: R = []
3: A = all attributes that appear in ACSDb with C
4: for a ∈ A, b ∈ B, s.t. a 6= b do
5: if (a, b) /∈ACSDb then
6: // Score candidate pair with syn function
7: if syn(a, b) > t then
8: R.append(a, b)
9: end if

10: end if
11: end for
12: sort R in descending syn order
13: return R

Figure 11: The SynFind algorithm finds all poten-
tial synonym pairs that have occurred with C in the
ACSDb and have not occurred with each other, then
scores them according to the syn function

1: Function ConstructJoinGraph(A, F):
2: N = {}
3: L = {}
4: for (S , c) ∈ A do
5: N .add(S)
6: end for
7: for S , c) ∈ A do
8: for attr ∈ F do
9: if attr ∈ S then

10: L.add((attr,F ,S))
11: end if
12: end for
13: end for
14: return N ,L

Figure 12: ConstructJoinGraph creates a graph
of nodes (N ) and links (L) that connect any two
schemas with shared attributes. We only material-
ize the locally-viewable portion, from a focal schema
F; this is sufficient to allow the user access to any
of its neighbors. The function takes the ACSDb as
an input.

WebTables must somehow create it artificially. The goal is
not to “reproduce” what each schema’s designers may have
intended, but rather to provide a useful way of navigating
this huge graph of 2.6M unique schemas. Navigating the
schemas by join relationship would be a good way of describ-
ing relationships between domains and is a well-understood
browsing mode, thanks to web hypertext.

We construct the basic join graph N ,L by creating a node
for each unique schema, and an undirected join link between
any two schemas that share a label. Thus, every schema that
contains name is linked to every other schema that contains
name. We describe the basic join graph construction formally
in Figure 12. We never materialize the full join graph at
once, but only the locally-viewable portion at a focal schema
F .

A single attribute generally links to many schemas that
are very similar. For example, size occurs in many filesystem-
centric schemas: [description, name, size], [description,
offset, size], and [date, file-name, size]. But size

also occurs in schemas about personal health ([height, size,

weight]) and commerce [price, quantity, size]. If we



could cluster together similar schema neighbors, we could
dramatically reduce the “join graph clutter” that the user
must face.

We can do so by creating a measure for join neighbor

similarity. The function attempts to measure whether a
shared attribute D plays a similar role in its schemas X and
Y . If D serves the same role in each of its schemas, then
those schemas can be clustered together during join graph
traversal.

neighborSim(X, Y, D) =
1

|X||Y |
Σa∈X,b∈Y log(

p(a, b|D)

p(a|D)p(b|D)
)

The function neighborSim is very similar to the coherency

score in Figure 8. The only difference is that the probability
inputs to the PMI function are conditioned on the presence
of a shared attribute. The result is a measure of how well two
schemas cohere, apart from contributions of the attribute in
question. If they cohere very poorly despite the shared at-
tribute, then we expect that D is serving different roles in
each schema (e.g., describing filesystems in one, and com-
merce in the other), and thus the schemas should be kept in
separate clusters.

Clustering is how neighborSim helps with join graph traver-
sal. Whenever a join graph user wants to examine outgoing
links from a schema S, WebTables first clusters all of the
schemas that share an attribute with S. We use simple
agglomerative clustering with neighborSim as its distance
metric. When the user chooses to traverse the graph to a
neighboring schema, she does not have to choose from among
hundreds of raw links, but instead first chooses one from a
handful of neighbor clusters.

5. EXPERIMENTAL RESULTS
We now present experimental results for relation ranking

and for the three ACSDb applications.

5.1 Relation Ranking
We evaluated the WebTables ranking algorithms described

in Section 3.1: näıveRank, filterRank, featureRank,
and schemaRank.

Just as with the training set described in Section 3, we
created a test dataset by asking two human judges to rate
a large set of (query, relation) pairs from 1 to 5 (where
5 denotes a relation that is perfectly relevant for the query,
and 1 denotes a completely irrelevant relation). We cre-
ated 1000 pairs, divided over a workload of 30 queries. For
featureRank and schemaRank, which incorporate a se-
ries of clues about the relation’s relevance to the query, we
chose feature weights using a trained linear regression model
(again from the WEKA package) [28].

We composed the set of query, relation pairs by first
sending all the queries to näıveRank, filterRank, fea-
tureRank, and schemaRank, and recording all the URLs
that they emitted. We then gathered all the relations de-
rived from those URLs, and asked the judges to rate them.
Obviously it is impossible for human judges to consider ev-
ery possible relation derived from the web, but our judges
did consider all the “plausible” relations - those generated by
any of a number of different automated techniques. Thus,
when we rank all the relations for a query in the human-
judged order, we should obtain a good approximation of the
“optimal” relation ranking.

k Näıve Filter Rank Rank-ACSDb
10 0.26 0.35 0.43 0.47
20 0.33 0.47 0.56 0.59
30 0.34 0.59 0.66 0.68

Table 5: Fraction of high-scoring relevant tables in
the top-k, as a fraction of “optimal” results.

Input 1 2 3

name 0 0.6 0.8
instructor 0.6 0.6 0.6
elected 1.0 1.0 1.0

ab 0 0 0
stock-symbol 0.4 0.8 0.8

company 0.22 0.33 0.44
director 0.75 0.75 1.0
album 0.5 0.5 0.66
sqft 0.5 0.66 0.66
goals 0.66 0.66 0.66

Average 0.46 0.59 0.62

Table 6: Schema auto-complete’s rate of attribute
recall for ten expert-generated test schemas. Auto-
complete is given three “tries” at producing a good
schema.

We will call a relation “relevant” to its query if the table
scored an average of 4 or higher by the judges. Table 5
shows the number of relevant results in the top-k by each
of the rankers, presented as a fraction of the score from the
optimal human-judged list. Results are averaged over all
queries in the workload.

There are two interesting points about the results in Ta-
ble 5. First, Rank-ACSDb beats Näıve (the only solution
for structured data search available to most people) by 78-
100%. Second, all of the non-Näıve solutions improve on
the optimal solution as k increases, suggesting that we are
doing relatively well at large-grain ranking, but more poorly
at smaller scales.

5.2 Schema Auto-Completion
Output schemas from the auto-completion tool are almost

always coherent (as seen with the sample outputs from Ta-
ble 3), but it would also be desirable if they cover the most
relevant attributes for each input. We can evaluate whether
the tool recalls the relevant attributes for a schema by test-
ing how well its outputs “reproduce” a good-quality test
schema.

To generate these test schemas, we asked six humans who
are familiar with database schemas to create an attribute
list for each of ten databases, given only the inputs listed
in Tables 3 and 4. For example, when given the prompt
company, one user responded with ticker, stock-exchange,
stock-price. We retained all the attributes that were sug-
gested at least twice. The resulting test schemas contained
between 3 and 9 attributes.

We then compared these test schemas against the schemas
output by the WebTables auto-completion tool when given
the same inputs. We allowed the auto-completion tool to run



Input 5 10 15 20

name 1.0 0.8 0.67 0.55
instructor 1.0 1.0 0.93 0.95
elected 0.4 0.4 0.33 0.3

ab 0.6 0.4 0.33 0.25
stock-symbol 1.0 0.6 0.53 0.4

company 0.8 0.7 0.67 0.5
director 0.6 0.4 0.26 0.3
album 0.6 0.6 0.53 0.45
sqft 1.0 0.7 0.53 0.55
goals 1.0 0.8 0.73 0.75

Average 0.8 0.64 0.55 0.5

Table 7: Fraction of correct synonyms in top-k
ranked list from the synonym-finder.

multiple times; after the algorithm from Section 4.1 emitted
a schema S, we simply removed all members of S from the
ACSDb, and then reran the algorithm. We gave the auto-
completion tool three “tries” for each input.

Table 6 shows the fraction of the input schemas that
WebTables was able to reproduce. By its third output,
WebTables reproduced a large amount of all the test schemas
except one2, and it often did well on its first output. Giving
WebTables multiple tries allows it to succeed even when an
input is somewhat ambiguous. For example, the WebTa-

bles schema listed in Table 3 (its first output) describes
filesystem contents. But on its second run, WebTables’s
output contained address-book information (e.g., office,

phone, title); the test schema for name contained exclu-
sively attributes for the address-book domain.

5.3 Synonym-Finding
We tested the synonym-finder’s accuracy by asking it to

generate synonyms for the same set of inputs as seen pre-
viously, in Table 4. The synonym-finder’s output is ranked
by quality. An ideal ranking would present a stream of only
correct synonyms, followed by only incorrect ones; a poor
ranking will mix them together. We consider only the ac-
curacy of the synonym-finder and do not attempt to assess
its overall recall. We asked a judge to determine whether a
given synonym pair is accurate or not.

The results in Table 7 show that the synonym-finder’s
ranking is very good, with an average of 80% accuracy in
the top-5. The average number of correct results declines as
the rank increases, as expected.

5.4 Join Graph Traversal
Most clusters in our test set (which is generated from a

workload of 10 focal schemas) contained very few incorrect
schema members. Further, these “errors” are often debat-
able and difficult to assess reliably. It is more interesting
to see an actual portion of the clustered join graph, as in
Figure 13. In this diagram, the user has visited the “focal
schema”: [last-modified, name, size], which is drawn at
the top center of the diagram. The user has applied join
graph clustering to make it easier to traverse the join graph

2No test designer recognized ab as an abbreviation for “at-
bats,” a piece of baseball terminology. WebTables gave
exclusively baseball-themed outputs.

and explore related schemas.
By definition, the focal schema and its neighbor schemas

share at least one attribute. This figure shows some of
the schemas that neighbor [last-modified, name, size].
Neighbors connected via last-modified are in the left-hand
column, neighbors via name are in the center column, and
neighbors who share size are at the right.

Every neighbor schema is part of a cluster. (We have an-
notated each cluster with the full cluster size and the rough
subject area that the cluster seems to capture.) Without
these thematic clusters in place, the join graph user would
have no reasonable way to sort or choose through the huge
number of schemas that neighbor the focal schema.

In Figure 13, most of the schemas in any given cluster are
extremely similar. However, there is one schema (namely,
the [group, joined, name, posts] schema) that has been
incorrectly allocated to its cluster. This schema appears to
be used for some kind of online message board, but has been
badly placed in a cluster of retail-oriented schemas.

6. RELATED WORK
A number of authors have studied the problem of infor-

mation extraction from a single table, though most have
not tried to do so at scale. Gatterbauer, et al. attempted
to discover tabular structure without the HTML table tag,
through cues such as onscreen data placement [13]. Their
approach could make a useful table extractor for WebTa-

bles. Chen, et al. tried to extract tables from ASCII text [8].
Penn, et al. attempted to reformat existing web informa-
tion for handheld devices [23]. Like WebTables, they had
to recognize “genuine tables” with true two-dimensional se-
mantics (as opposed to tables used merely for layout). Sim-
ilarly, as discussed in Section 1, Wang and Hu detected
“good” tables with a classifier, using features that involved
both content and layout [27]. They operated on a corpus of
just over ten thousand pages and found a few thousand true
relations. Zanibbi, et al. offered a survey of table-parsing
papers, almost all focused on processing a single table [32].
None of the experiments we found involved corpora of more
than a few tens of thousands of tables.

We are not aware of any other effort to extract relational
tables from the web at a scale similar to WebTables. The
idea of leveraging a corpus of schemas was first considered
in [17]. That work considered collections of 40-60 schemas in
known domains extracted from various sources, and showed
that these schemas can be used to improve the quality of
automatically matching pairs of disparate schema. As part
of that, [17] used statistics on schema elements similar to
ours.

We do not know of any work on automated attribute-
synonym finding, apart from simple distance metrics used
as part of schema matching systems [10, 17, 18, 24]. There
has been some work on corpus-driven linguistic synonym-
finding in the machine learning community. Pantel and Lin
found predicate-like synonyms (e.g., is-author-of ∼= wrote)
from text by examining statistics about use of objects (e.g.,
Mark Twain, book) near the synonym candidates; there is
no natural analogue to these objects in a relational schema
setting [16]. Turney used language cooccurrence statistics
from the Web to answer standardized-test-style synonym
questions, but relies on word-proximity statistics that seem
inapplicable to structured data [25]. Cong and Jagadish
used data statistics and notions of schema-graph-centrality



Figure 13: A neighbor-clustered view of the join graph, from focal schema [last-modified, name, size].
Schemas in the left-hand column share the last-modified attribute with the focal schema; schemas in the
center column share name, and schemas at right share size. Similar schemas are grouped together in cluster
boxes. The annotation under each box describes the total number of schemas and the theme of the cluster.

to create a high-quality summary of a very complicated re-
lational schema graph, but this was designed to apply to
an existing highly-engineered schema, not a synthetically-
produced graph as in our join traversal problem [31].

A number of tools have taken advantage of data statistics,
whether to match schemas [10, 11], to find dependencies [3,
29], or to group into tables data with many potentially-
missing values [7, 22]. All of these systems rely on the
dataset to give cues about the correct schema. We believe a
hybrid of the ACSDb schema data and these data-centric
approaches is a very promising avenue for future work.

7. CONCLUSIONS AND FUTURE WORK
We described the WebTables system, which is the first

large-scale attempt to extract and leverage the relational
information embedded in HTML tables on the Web. We de-
scribed how to support effective search on a massive collec-
tion of tables and demonstrated that current search engines
do not support such search effectively. Finally, we showed

that the recovered relations can be used to create what we
believe is a very valuable data resource, the attribute corre-

lation statistics database.
In this paper we applied the ACSDb to a number of

schema-related problems: to improve relation ranking, to
construct a schema auto-complete tool, to create synonyms
for schema matching use, and to help users in navigating
the ACSDb itself.

We believe we are just starting to find uses for the statis-
tical data embodied in our corpus of recovered relations. In
particular, by combining it with a “row-centric” analogue
to the ACSDb, in which we store statistics about colloca-
tions of tuple keys rather than attribute labels, we could
enable a “data-suggest” feature similar to our schema auto-
completer. Of course, there are tremendous opportunities
for creating new data sets by integrating and aggregating
data from WebTables relations, and enabling users to com-
bine this data with some of their private data.

The WebTables relation search engine is built on the



set of recovered relations, and still offers room for improve-
ment. An obvious path is to incorporate a stronger signal of
source-page quality (such as PageRank) which we currently
include only indirectly via the document search results. The
ACSDb may offer better information beyond the schema
quality score we currently use; one idea is to use more of
the graphical structure of attribute cooccurrences, so that
“nearby” good schemas can have an impact on a relation’s
ranking.

Finally, we would like to also include relational data de-
rived from more than just HTML tables. Potential data
sources that researchers have studied include tabular lay-
outs that do not use the table tag, deep web databases,
socially-tagged data items, HTML-embedded lists, and nat-
ural language text [1, 5, 12, 13, 14, 19, 26]. One especially
promising approach is that of Mansuri and Sarawagi, who
used information in a partially-complete database to assist
with information extraction from raw text [21].
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