
Explaining Data in Visual Analytic Systems
by

Eugene Wu
B.S., University of California, Berkeley (2007)

M.S., Massachusetts Institute of Technology (2010)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015

© Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of

Electrical Engineering and Computer Science
December 18, 2014

Certified by. .
Samuel Madden

Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

Explaining Data in Visual Analytic Systems
by

Eugene Wu

Submitted to the Department of
Electrical Engineering and Computer Science

on December 18, 2014, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

ABSTRACT
Data-driven decision making and data analysis has grown in both importance and availability
in the past decade, and has seen increasing acceptance in the broader population. Visual tools
are needed to help non-technical users explore and make sense of their datasets. However
even with existing tools, many common data analysis tasks are still performed using manual,
error-prone methods, or simply inaccessible due to non-intuitive interfaces.

In this thesis, we addressed a common data analysis task that is ill-served by existing
visual analytical tools. Specifically, although visualization tools are well suited to identify
patterns in datasets, they do not help users characterize surprising trends or outliers in the
visualization and leave that task to the user. We explored the necessary techniques so users
can visually explore datasets, specify outliers in the resulting visualizations, and produce
explanations that help explain the systematic sources of the outlier values.

To this end, we developed three systems: DBWipes, a browser-based visual exploration
tool; Scorpion, a set of algorithms that describes the subset of an outlier’s input records that
“explain away” the anomalous value; and SubZero, a system to track and retrieve the input
records that contributed to output records of a complex workflow. From our experiences,
we found that existing visual analysis system designs leave a number of program analysis,
performance, and functionalities on the table, and proposed an initial design of a data
visualization management system (DVMS) that unifies data processing and visualization
and can help address these existing issues.

Thesis Supervisor: Samuel Madden
Title: Professor

3

ACKNOWLEDGMENTS
We stand on the shoulders of giants

yet innumerable people lift us onto those shoulders.

The big ones: Sam Madden has been the most consistent and positive source of ideas,
perspective, freedom, encouragement, cheerleadering, laughter and funding. . . for chocolate.
His firm grasp on what really matters in both research and in life has been a constant source
of of inspiration as I grew as a researcher and human, and his deep baritone voice has been
a constant source of envy. From him, I learned to ask the question “what’s cool?”. Michael
Stonebraker has been un-yieldingly honest, insightful, and supportive. From him, I learned
to always ask “what’s useful?”. From Nickolai Zeldavich I learned the value of, if not the
implementation of, a strong work ethic. He graciously passed me during my qualifying exams
and still agreed to be on my Ph.D. committee.

This work couldn’t have been possible without help from Dr. James Michaelson’s lab,
Martin Spott and researchers at British Telecom, and my user study participants.

The graduate experience is neither complete nor possible without the enormous intel-
lectual and emotional support from my colleagues and friends. Philippe Cudre-Mauroux
mentored me early on and is an excellent friend with a wonderful karaoke voice. Alvin Cheung
has an enormous mental repository and taught me to thoroughly question the fundamentals.
Lenin Ravindranath is the fastest ideas-to-prototype-to-publication research I know, and I
learned a lot from watching him shape ideas. Carlo Curino is the warmest, silliest Italian I
know, and showed me how to balance goofiness and research precision. Adam Marcus both
introduced and let me join him on his journey through the database crowdsourcing world.
Beyond being an amazing friend, he is also the moral guidepost upon which I measure my
ethical decisions.

Sam provided the funds, but Sheila Marian made sure I got those resources.
I could not have been part of a better research group than the MIT Database group –

thank you all. There were no better officemates than the illustrous members of the G930
office – yuan mei, akcheung, ravi, pcm, yonch, asfan, and nirmesh.

5

I owe gratitude to so many who have helped make Cambridge my second home: Anant
Bhardwaj, Ramesh and Priya Chandra, Alvin Cheung, Jenny Cheung, Austin Clements,
James Cowling was first to welcome me to MIT, Neha Crosby, Cody Cutler, Aaron and
Emily Elmore, Gartheeban, Michal Depa, Edward, Grace and Everest Benson, Carlo and
Christy Curino, Irene Fan, Ben Holmes, Evan “<3 transactions” Jones, Neha Narula, Ravi
Netravali, Karen and Bryan Ng, Aditya Parameswaran, Jonathan, Noa and Ayala Perry,
Raluca Popa, Irene and Dan Ports, Asfandyar Querishi, Lenin Ravindranath, Meelap Shah,
Lynn and Edward Sung, Jen and Terence Ta, Stephen Tu, Tosci’s, Grace Woo and Szymon
Jakubczak with whom I have shared a home, a mortgage, and my birthday, Yang “big man”
Zhang and Christine Rha, Yuan Mei, Richard Zhang.

I would never have discovered the supportive and inclusive database community if not
for the many many people at UC Berkeley. Shawn Jeffery and Shariq Rizvi saved me from a
directionless first summer and pulled me into my first foray in the database group. Michael
Franklin and Joeseph Hellerstein, to this day, provide continued support for a precocious
kid who once thought he knew everything. Yanlei Diao showed me how to mold a simple
class project into my first and still most cited “real” paper. Before joining MIT, Mr. Jeffery
convinced me to play at Google, where Alon Halevy and Michael Cafarella introduced me to
research at scale.

So many thanks to Lydia “Zhenya” Gu, who has stuck with me despite all of my wonderful
qualit. . . I mean faults and strangeness.

I would have nothing if not for my parents and my brother Johnny Wu.

6

Contents

1 Introduction 15
1.1 Example . 15
1.2 A Solution Sketch . 16
1.3 Dissertation Contributions . 17

2 A Brief Lineage Primer 21
2.1 Provenance and Lineage Background . 21
2.2 Workflow Data and Execution Model . 24
2.3 Provenance Data and Query Model . 26
2.4 Lineage Data and Query Model . 27

3 High-throughput Lineage 31
3.1 Introduction . 31
3.2 Scientific Data Processing . 34
3.3 Use Cases . 36
3.4 Architecture . 39
3.5 Lineage Representations . 40
3.6 Lineage API . 42
3.7 Implementation . 48
3.8 Lineage Strategy Optimizer . 52
3.9 Experiments . 54
3.10 Discussion and Future Directions . 62
3.11 Conclusion . 66

4 Explaining Visualization Outliers 69
4.1 Introduction . 69
4.2 Motivation and Use Cases . 72
4.3 Problem Setup . 75

7

4.4 Formalizing Influence . 76
4.5 Assumptions . 82
4.6 Basic Architecture . 83
4.7 Query and Aggregation Properties . 86
4.8 Partitioning Algorithms . 91
4.9 Merger Optimizations . 98
4.10 Dimensionality Reduction . 103
4.11 Experimental Setup . 103
4.12 Synthetic Dataset Experiments . 107
4.13 Real-World Datasets . 113
4.14 Conclusion . 114

5 Exploratory & Explanatory Visualization 115
5.1 Basic DBWipes Interface . 115
5.2 Scorpion Interface . 119
5.3 Implementation . 121
5.4 Experimental Setup . 122
5.5 Quantitative Results . 126
5.6 Scorpion Reduces Analysis Times . 127
5.7 Scorpion Improves Answer Quality . 128
5.8 Self-Rated Qualitative Results . 130
5.9 Strategies for Mining Explanations . 131
5.10 Conclusion . 135

6 A Data Visualization Management System 137
6.1 Introduction . 137
6.2 Overview and Running Example . 139
6.3 Logical Visualization Plan . 141
6.4 Data and Execution model . 146
6.5 Physical Visualization Plan . 147
6.6 Implementation . 150
6.7 Benefits of a DVMS . 156
6.8 Conclusions . 159

7 Related Work 161
7.1 Data Visualization Systems . 161
7.2 Provenance Management Systems . 162

8

7.3 Outlier Explanation . 164

8 Conclusion 169

9

Figures and tables

1-1 Architectural summary of system contributions (colored boxes) in this disser-
tation. 18

2-1 Provenance of a simple SQL query plan. 22
2-3 Example of a workflow instance. Boxes are operators, each Tx is a dataset,

and edges connect datasets to operator inputs or outputs. 26
2-4 Example of a backward lineage query (black arrows) 29
2-5 Example of a forward lineage query (black arrows) 29

3-1 Cost of incrementing one million floats in PostgreSQL and Python+Numpy. 35
3-2 Diagram of LSST workflow. Each empty rectangle is a SciDB native operator

while the black-filled rectangles A-D are UDFs. 37
3-3 Simplified diagram of genomics workflow. Each empty rectangle is a SciDB

native operator while the black filled rectangles are UDFs. 38
3-4 The SubZero architecture. 39
3-5 Runtime methods that SubZero makes available to the operators. 42
3-6 Operator methods that the developer will override. 42
3-7 Four examples of encoding strategies . 49
3-8 Lineage Strategies for Benchmark Experiments. 53
3-9 Astronomy Benchmark: disk and runtime overhead. 55
3-10 Astronomy Benchmark: query costs. 56
3-11 Genomics benchmark: disk and runtime overhead. 58
3-12 Genomics benchmark: query costs with and without the query-time optimizer

(Section 3.8.1.) . 59
3-13 Genomics benchmark: disk and runtime overhead when varying SubZero

storage constraints. 60
3-14 Genomics benchmark: query costs when varying SubZero storage constraints. 60
3-15 Microbenchmarks: disk and runtime overhead 61

11

3-16 Microbenchmarks: backward lineage queries, only backward-optimized strategies 62

4-1 Mean and standard deviation of temperature readings from Intel sensor dataset. 70
4-2 Example tuples from sensors table . 73
4-3 Query results (left) and user annotations (right) 73
4-4 Notations used . 75
4-5 Tables in example problem to show that IP problem is ill-defined under Q2 83
4-6 Scorpion architecture . 84
4-7 Each point represents a tuple. Red color means higher influence. 85
4-8 Threshold function curve as infmax varies 93
4-9 Combined partitions of two simple outlier and hold-out partitionings 95
4-10 The predicates are not influential because they either (a) influence a hold-out

result or (b) doesn’t influence an outlier result. 97
4-11 Merging partitions p1 and p2 . 99
4-12 Influence curves for predicates p1 and p2, and the frontier (grey dashed line). 101
4-13 Visualization of outlier and hold-out results and tuples in their input groups

from a 2-D synthetic dataset. The colors represent normal tuples (light grey),
medium valued outliers (orange), and high valued outliers (red). 105

4-14 Optimal NAIVE predicates for SYNTH-2D-Hard 108
4-15 Accuracy statistics of NAIVE as c varies using two sets of ground truth data. 108
4-16 Accuracy statistics as execution time increases for NAIVE on SYNTH-2D-Hard109
4-17 Accuracy measures as c varies . 110
4-18 F-score as dimensionality of dataset increases 110
4-19 Cost as dimensionality of Easy dataset increases 111
4-20 Cost as size of Easy dataset increases (c=0.1) 111
4-21 Cost with and without caching enabled . 112

5-1 Basic DBWipes interface. 116
5-2 Faceted navigation using DBWipes. 117
5-3 Negating a predicate illustrates its contributions to the aggregated results. . 118
5-4 Setting a predicate as a permanent filter. 118
5-5 Scorpion query form interface. 119
5-6 Interface to manually specify an expected trend. 119
5-7 Selecting a Scorpion result in DBWipes. 120
5-9 Distribution of Participant Expertise . 123
5-10 Task interface for task T3 . 126
5-11 Task completion times for each task and tool combination. 128

12

5-12 score1 values for each task and tool combination. 128
5-13 score0.5 values for each task and tool combination. 129
5-14 Self-reported task difficulty by task, expertise. 130
5-15 Self-reported experience using the tools. 131
5-16 State facet interfaces (synthetic outliers highlighted in black.) 132

6-1 High-level architecture of a Data Visualization Management System 140
6-2 Faceted visualization of expenses table . 141
6-3 expenses Logical Visualization Plan. 142
6-4 Summary of classes. 143
6-5 Visualization after each rendering operator 150
6-6 Gallery of Ermac generated visualizations. 151
6-7 Workflow that generates a multi-view visualization 153

13

1 Introduction

Analyzing data is an exploratory process, where the analyst attempts to understand the
trends and patterns hidden in the data. Technology trends have continued to change the
nature of data analysis in two seemingly opposing directions. On one hand, datasets that are
gathered from an increasing number of sources, such as financial markets, sensor deployments,
and network monitoring, are also growing in size, dimensionality, and complexity. On the
other hand, the lower costs and increasing accessibilty to acquire, store, and process data is
broadening the class of data analysts to include more and more non-professional and novice
programmers. These trends point to the need for systems that are both easy to use for a
broad range of data users, and can effectively support the user’s exploration process, even
when working with large and diverse datasets.

In recent years, there has been significant progress in interactive visualzation systems,
such as Polaris [102] and Tableau, that simplify how analysts interact with databases.
These systems translate direct manipulation operations, such as mouse clicks and dragging
operations, into database queries and visualization operations. This allows analysts that are
not familiar with query and programming languages rapidly explore many views of the data
with minimal training.

1.1 EXAMPLE
During the user’s exploration process, some visualizations will reveal surprising patterns
that the user will want to understand. For instance, a sales analyst that is monitoring daily
sales transaction data may be surprised by a sudden spike in recent sales revenue. This
increase could be due to a multitude of reasons – the company’s expansion into a new
market that triggered sales from new users, an increase in popularity within a specific user
segment, or simply an accounting error that over-estimated some sales amounts by an order
of magnitude – none of which are obvious through the visualization. Although it is simple
to visually identify the anomalies, it is significantly more difficult to determine the reasons

15

behind them using existing systems.
A common approach is to look for attribute values (or combinations) that are highly

correlated with the anomalies. Analysts will select subsets of the data that mtach different
combinations of attribute values and observe how the anomalies in the visualization change.
However, visually comparing the visualizations can result in sub-optimal or incorrect conclu-
sions due to the limits of human graphical perception [32] – our ability to decode quantatative
information for visual encodings. In addition, the number of possible combinations increases
exponentially with the dimensionality of the dataset and quickly dwarfs the number that
can be feasibly tested by hand.

While it may be possible for professional data analysts to write programs to automate
some of this analysis, this requires switching to a different development environment and
writing a separate program for each visualization. In addition, novice users that depend on
the application to perform analyses [62] will not have the technical expertise, and resort to
a manual process that can only test a small number of combinations.

This highlights a core limitation of existing visual analytics systems – they are designed
to display data, but lack facilities to explain the underlying patterns in the context of the
visualization. In this dissertation, we explore the mechanisms that enable visual exploration
and explanation of data. We develop visual interfaces to specify anomalies and present
explanations, data-mining algorithms to generate explanations for user specified anomalies
in the visualization, and data-processing systems to support these functionalities.

1.2 A SOLUT ION SKETCH
Developing a general purpose system that can support this form of explanatory interaction
depends on the specific visualization that the user creates, how the data was transformed
prior to visualization, and the types of anomalies that the user is interested in. Consider the
problem above; a solution needs to perform the following steps:

Specify Anomalies
Visualization systems often support a large class of possible visualizations, each encoding
data into visual properties in a custom way. Thus, the system needs to provide a uniform
way for the user to express anomalies in any visualization expressible by the system. For
example, in a heat map, the positional attributes matter less than the luminosity or hue
of the selected points. In contrast, a typical bar chart will encode the primary variable
of interest along the y-axis position, whereas the hue is used for grouping the bars by a

16

categorical variable. When the user selects a portion of the visualization, it must be easy to
specify the precise output and the attributes that are anomalous.

Backwards Lineage
In general, every output point is an aggregate that is generated by combining data from
multiple input tuples. In order to work backwards from the output to its corresponding inputs
(its lineage), both the visualization and database systems need to track lineage information
and provide a queryable lineage interface. Although some database systems [113] have
been instrumented to track lineage information, few can ensure resource guarantees when
processing large datasets. In addition, visualization clients are implemented imperatively,
making tracking data lineage through the visualization layer very difficult. Thus, a key
challenge is a system design that can automatically, and efficiently, track lineage across both
data processing and the visualization layer.

Generate Explanations
For each outlier result, we need to generate a set of possible explanations for its value. In
the example above, the explanation is a combination of attribute values that most caused
the result to be an outlier. However, it is not clear what a good explanation is, and manual
heuristics to this problem often use inconsistent preference criteria. Thus the key challenges
are to define a formal definition of a “good explanation” and develop algorithms that can
efficiently find them.

Interface Integration
The set of explanations that are generated can potentially be very large, and the visualization
needs to include an interface for users to efficiently navigate through the possible explanations
and evaluate them by hand. In addition, the explanation process needs to be integrated
such that it augments, rather that replaces or disrupts, the user’s normal data exploration
workflow.

1.3 D I S SERTAT ION CONTR IBUT IONS
This thesis contributes novel systems and algorithms that expand the scope of analyses that
analysts can express through a visual interface. The overall architecture and each of the
systems is summarized in Figure 1-1. The visualization system translates user interactions,
such as clicks and mouse drags, into SQL queries submitted to the database, and updates

17

Visualization!
System!

(DBWipes)!
DBMS!

Queries!

Data!

Outlier Explanation!
(Scorpion)!

Provenance System (SubZero)!

DVMS%(Ermac)%

Figure 1-1: Architectural summary of system contributions (colored boxes) in this dissertation.

the visualization with the query results. The provenance system tracks the provenance
metadata throughout the query execution and efficiently retrieves the records that were
used to generate points and lines in the visualization. The outlier explanation system
uses provenance information to generate explanations to outliers that the user finds in
the visualization. The above components are designed on top of existing database and
visualization architectural designs. In contrast, rather than extending existing systems to
support these functionalities, the data visualization management system is a clean-slate
design that aims to simplify many of the analysis, performance, and engineering challenges
with existing database and visualization system designs. This section describes each of these
components in more detail.

High-throughput Provenance System
The overhead of tracking input-output record relationships can be orders of magnitude
more resource and time intensive than the baseline execution system without provenance,
and existing provenance systems are not well equipped to manage the resource overheads.
Chapter 3 presents the design and implementation of SubZero, a provenance management
system that extends high-throughput workflow execution systems with the ability efficiently
expose provenance metadata and manage the storage and runtime costs of tracking this
information. Our experiments on two scientific benchmark applications show that such a
management system is necessary in data-intensive environments.

Novel Algorithms for Outlier Explanation
In Chapter 4, we present Scorpion, a system that explains outliers in the result of aggregation
queries. Scorpion mines combinations of attribute values (predicates) to find combinations
that most influence the values of those outliers. Our contributions include a novel sensitivity-
based influence metric that assesses the amount a predicate contributes ot outlier values for

18

arbitrary aggregation functions, and efficient algorithms for mining the space of possible
predicates for common classes of SQL aggregation functions.

Interactive System for Exploring Data
Chapter 5 introduces DBWipes, a visual analytics tool that is integrated with the Scorpion
explanation system. DBWipes contributes an interface for assessing the influence of input
data on anomalies in a visualization, and a direct manipulation interface for specifying
visualization anomalies and asking why those results are anomalous. We present user study
results that show Scorpion significantly increases how quickly and accurately users are
able to understand anomalies in a visualization, and identify a number of common user
mis-perceptions when search for explanations that can lead to incorrect conclusions.

Integrated Data and VisualizationManagement System
Finally, we use our lessons learned to propose the design of a Data Visualization Management
System (DVMS) that combines data processing and visualization tasks in a single relational
execution engine. The system translates high-level declarative visualization specifications
into a relational execution plan that produces as output a visualization. This integration
enables provenance information to be tracked from the input data records to the rendered
outputs. We describe the system design in Chapter 6, and outline a number of research
opportunities that result from an integrated design.

19

2 A Brief Lineage Primer

Before describing our approach to tracking and query provenance, it is helpful to describe
what lineage is and how it is defined in this dissertation. This chapter provides a brief
overview of lineage, and defines the general workflow execution model, lineage model, and
lineage query model that is used in subsequent chapters. In addition, we will introduce
several examples of applications that track and use lineage, and the key dimensions that can
be used to classify and compare different lineage systems. Our goal is to motivate the value
of lineage information, and provide enough context and formalism so that the subsequent
chapters can be understood. Chapter 7 provides a more detailed list of related publications,
theses, and surveys for the interested reader.

2.1 PROVENANCE AND L INEAGE BACKGROUND
This section introduces the concepts of provenance and lineage, and comments on their
semantics.

2.1.1 PROVENANCE
Provenance was originally described in the context of the art world to describe an art
piece’s creation and ownership history. Similarly, provenance in computational systems is
metadata that fully describes the origins of a data artifact. This can include input data,
intermediate results, processing components, arguments, and annotations. Tracking this
information is useful for post-hoc debugging or analysis and can answer questions such as
“What files were used to create this result?” and “What result files were computed by this
buggy implementation?”.

This metadata can be modeled as a directed acyclic graph (DAG), where an edge A→ B

means that A was used to derive B. The nodes typically refer to a particular version of a
process (e.g., operators, scripts, programs), the process arguments (e.g., configuration files,

21

input arguments) and data files. Each node may have a number of properties, such as a file
system path, a version number, or a constant argument value.

σa > 10! ϒsum(a)!T! Tintermediate* Tresult*

Figure 2-1: Provenance of a simple SQL query plan.

For example, a scientist that runs several scripts to generate a graph of his experiment
results may want to track the order in which she ran the scripts and which data files she
used. In this case, nodes would correspond to the scripts and data files. As another example,
database systems translate SQL queries into an operator tree whose leaf operators consume
input relations, and the root operator outputs the result relation. In this context, Figure 2-1
illustrates the provenance of the following query:

SELECT sum(a) FROM T WHERE a > 10

The provenance consists of the operators in the query plan (black text), the input, interme-
diate, and output relations (grey text), and the dependency information (edges).

Once the graph has been created, users can query the graph using graph-like query
languages such as Lorel [3], SparQL [90], PQL [49] or by writing graph traversal programs.

2.1.2 L INEAGE
A subset of provenance, called data lineage is specifically concerned with the dependencies
between the data records in the inputs and outputs of a computational process. For example,
a visualization system may want to track the relationships between pixels in the rendered
image and the data records in the database so that users can select a set of pixels and
examine their input data.

Data lineage systems such as Trio [113] and SubZero [118] (Chapter 3) contrast from
general provenance systems by the finer granularity in which the data provenance is tracked.
Lineage systems typically model nodes in the provenance graph processes and individual
data records.

This adds two wrinkles towards tracking dependency information. First, tracking fine-
grained dependencies is significantly more difficult than coarse file relationships. While it may
be easy to instrument the runtime (e.g., the file system [85]) to automatically track and add
dependency information to the files that processes read and write, record-level relationships

22

depend on understanding the semantics of the processes, which may be black-boxes to the
runtime.

Second, the quantity of lineage information increases with the size of the datasets.
In the worst case, every output record depends on every input record and the number of
relationships is quadratic with respect to the dataset size. As datasets increase from hundreds
to millions or billions of records, lineage information can easily become the dominant cost in
the execution system.

2.1.3 PROVENANCE AND L INEAGE TERM INOLOGY
The distinctions between provenance and lineage can often lead to confusion because the
terms tend to take on differing meanings depending on the scientific discipline and context.
In some articles, the terms provenance and lineage are used interchangably, whereas in
others, lineage is used as a specific subset of provenance that is concerned with data item
relationships.

In this dissertation, we use the latter form; lineage refers to dependencies between data
(i.e., edges that connect two data artifacts), whereas provenance is concerned with general
dependencies between data files, operator execution history, and execution arguments. In
addition, we distinguish between coarse-grained lineage, which tracks relationships at the
dataset granularity, and fine-grained lineage, which tracks data record relationships as
described in the previous subsection. Unless otherwise specified, provenance is concerned
with coarse-grained lineage, while lineage refers to fine-grained lineage.

2.1.4 APPL ICAT ION DEF INED SEMANT ICS
The reason we are vague about the exact structure and meaning of the relationship A→ B is
because applications typically define their own semantics. The Open Provenance Model [83]
(OPM) is an effort to standardize core provenance concepts. It characterizes high-level notions
such as Artifacts such as datasets or files, Processes that consume and produce artifacts, and
Agents that execute processes. However, it does not dictate the storage representation, which
metadata to actually store, nor how relationships in the provenance graph are interpreted
by a specific application.

One reason for this difficulty is that nearly every discipline and application has different
provenance needs: scientists are concerned about reproducibility and want to track their
script executions and data files; desktop applications track operation logs to provide history
and undo features; security systems track information flow control (provenance) to avoid

23

leaking sensitive data; auditing systems are interested in a digital paper trail; probabilistic
database systems use lineage to compute the uncertainty of computation results.

Each of these applications cares about different types of provenance (e.g., script names
vs process arguments vs system calls), varying granularities of lineage information (e.g., data
files or data records), and define different notions of correctness (e.g., security systems may
not tolerate missing lineage relationships, but false positives may be acceptable).

As a simple example, consider the following simple Python code snippet, where input is
an array containing cells with two attributes, type and value, and the code computes the
sum of of all valid cell values:

sum = 0

for cell in input:

if cell.type == ’valid’:

sum += cell.value

return sum

One possible interpretation is that the output value sum depends on every cell in the
input if any attribute of the cell (e.g., cell.type, cell.value) was read in the process of
computing sum. In information flow control, this is called the implicit flow of the program,
which takes into account data used in the program’s control structure. Tracking implicit
flows is important when the application uses provenance for security purposes.

Alternatively, the developer may only care about explicit flows, and define the lineage
as all input cells whose cell.value was directly used to compute sum’s value. This may be
sufficient for simple diagnostic use cases.

This example shows that multiple acceptable semantics can be defined for the same
operator and the choice ultimately depends on the application that will use the lineage.
In this dissertation, our provenance systems are only concerned with providing efficient
lineage storage and querying mechanisms, and leave it to the applications to define their
own semantics.

2.2 WORKFLOW DATA AND EXECUT ION MODEL
In this section, we formalize what we mean by “dataset” and “workflow”.

24

2.2.1 DATA MODEL
We define a dataset as a collection of records where the records in the collection adhere to a
consistent schema, each record consists of values for each attribute in the schema, and there
is a unique identifier for each record. For instance, records (or cells) in a matrix or array are
identified by their array coordinates, while records in a database relation are identified by
the values of their primary key attributes.

2.2.2 EXECUT ION MODEL

P!
I P

1

…

I P

n
O P

(a) Input/Output for a single operator.

P!

P’!

(O
P , IP’

1)

(OB, I P’
2)

B!

(b) Edges between three operators.

Many systems, such as Hadoop, business processes, database systems, model execution
as a workflow of operators, controlled by a workflow management system. Developers
register operators and datasets, connect operators into workflows that the system executions
efficiently. For example, databases compile SQL queries into a tree-structured operator
workflow.

We assume that the workflow execution system applies a fixed sequence of operators to
some set of inputs. Each operator is uniquely defined by an ID and a version number, and
operates on one or more input datasets (e.g., tables or arrays), and produces a single output
object. Formally, we say an operator P takes as input n objects, I1

P , ..., In
P , and outputs a

single object, OP (Figure 2-2a).
Multiple operators are composed together to form a workflow, described by a workflow

specification, which is a directed acyclic graph W = (N, E), where N is the set of operators,
and e = (OP , Ii

P ′) ∈ E specifies that the output of P forms the i’th input to the operator P ′

(Figure 2-2b).
An instance of W , Wj , executes the workflow on a specific dataset. The workflow is

executed in a push-based fashion, where each operator runs when all of its inputs are
available.

25

For simplicity, we assume that workflow systems are “no overwrite,” meaning that inter-
mediate results produced as the output of operator execution are always stored persistently
and can be referenced. Also, we assume that each update to an object creates a new, persis-
tent version. Previous work [117] has explored which intermediate results to store if there is
limited storage space, so we don’t deal with it here.

2.3 PROVENANCE DATA AND QUERY MODEL
This section describes the provenance data and query in enough detail to serve as a contrast
to the lineage models described in the next section.

2.3.1 PROVENANCE DATA MODEL
We loosely model provenance as a provenance graph with “enough information to re-run
a workflow instance and reproduce the same results.” For example, consider the workflow
instance shown in Figure 2-3. The provenance represents an analagous graph that includes
the execution arguments for each operator (boxes), references to each dataset Tx, and the
edges that connect the datasets to operator input and output ports.

B!

D!

C!

A!T! TA!

TB!

TC!

TD!

Figure 2-3: Example of a workflow instance. Boxes are operators, each Tx is a dataset, and
edges connect datasets to operator inputs or outputs.

In addition, the provenance includes the returns and timings of all non-deterministic
calls so that they can be faithfully replayed if an operator is re-executed. This functionality
mirrors that present in many workflow systems [21, 67, 103]. Note that data is tracked at
the dataset level, so the relationships of individual records are not tracked.

2.3.2 PROVENANCE QUERY MODEL
Provenance queries can be viewed as graph traversal queries over the entire provenance
graph. Queries typically fall into three categories: queries agnostic to workflow instances,

26

queries specific to a workflow instance, and queries that access a specific node in the graph.
For example, queries in the former category include:

1. What are all workflow instances that executed operator A?

2. What are all workflow instances that used a corrupt dataset Ti as input?

3. What are all operator instances that computed a result derived from T?

4. What are all datasets that depend on a faulty operator A?

Examples of queries specific to a particular workflow instance Wi include:

1. What are the operators immediately preceeding operator A?

2. What datasets were used as input to operator A?

3. What output datasets depend on input dataset Ti?

4. What input datasets generated output dataset To?

5. Find all operator paths between input dataset Ti and output dataset To.

6. What input datasets do outputs To1 and To2 share?

Finally, some queries will retrieve metadata about nodes in a specific workflow instance Wi:

1. What were the arguments and recorded non-determinism for operator A in Wi?

2. What is the file referenced by Tx?

The lineage queries in the next section assume the ability to retrive the intermediate
datasets of a workflow instance given a path of operators in the provenance graph. Thus,
given a path A, B, D in Figure 2-3, the provenance system returns T, TA, TB as the inputs
to the operators, respectively, and TD as the output of TD.

2.4 L INEAGE DATA AND QUERY MODEL
In contrast to the previous section, this section describes how we logically model fine-grained
lineage, and the query model that we will use the rest of this dissertation.

27

2.4.1 L INEAGE DATA MODEL
To support lineage, we assume that each operator has been instrumented with the ability to
output lineage information as a side-effect of execution, and that the workflow system has a
mechanism to turn this ability on and off. We logically model lineage as a set of pairs of
input and output records:

{(out, in)|out ∈ OP ∧ in ∈ ∪i∈[1,n]I
i
P }

Here, out ∈ OP means that out is a single record contained in the output dataset OP . in

refers to a single record in one of the input datasets.
Chapter 3 describes the mechanisms for operator instrumentation, and efficient represen-

tations of this lineage information.

2.4.2 L INEAGE QUERY MODEL
Lineage queries are specifically concerned with relationships between one or more sets of
records. The queries take as input a set of records, and a path of operators in a workflow, and
returns a set of records that constitute the lineage. This formulation can answer questions of
the form “what input records do these results depend on?” or “what result records depend
on these inputs?”

Users execute a lineage query (the black path) by specifying an initial set of query records
C in a starting dataset, and a path of operators (P1 . . . Pm) to trace through the workflow:

R = execute_query(C, ((P1, idx1), ..., (Pm, idxm)))

Here, the indices (idx1 . . . idxm) are used to disambiguate the input of a multi-input
operator that the query path traverses through.

Depending on the order of operators in the query path, the query is a backward lineage
query or forward lineage query. A backward lineage query defines a path from a descendent
operator P1 that terminates at an ancestor operator, Pm. The output of an operator, Pi+1

is the idxi’th input of the previous operator, Pi, and C is a subset of P1’s output dataset,
C ⊆ OP1 .

A forward lineage query reverses this process, and defines a path from an ancestor
operator P1 to a descendent operator Pm. The output of an operator Pi−1 is the idxi’th
input of the next operator, Pi. The query records C are a subset of P1’s idx1’th input
array, C ⊆ Iidx1

P1
. The query results are the records R ⊆ OPm or R ⊆ Iidxm

Pm
, for forward and

backward queries, respectively.

28

B!

D!

C!

A!T! TA!

TB!

TC!

TD!

Figure 2-4: Example of a backward lineage query (black arrows)

As a concrete example, the black arrows in Figure 2-4 depicts the path of a backward
query execute_query(C, ((D, 2), (C, 1), (A, 1))). In this query, C ⊆ TD is a set of result
records, (D, 2) distinguishes between D’s inputs TB and TC and retrieves the input records
the second input dataset TC .

B!

D!

C!

A!T! TA!

TB!

TC!

TD!

Figure 2-5: Example of a forward lineage query (black arrows)

Figure 2-5 shows the path of the forward query execute_query(C, ((A, 1), (B, 1), (D, 1))).
C ⊆ T is a set of input records in T , and (A, 1) specifies that we are interested in the records
in TA that depend on C when T is used as the first input dataset in A. This distinction is
important because the same dataset could be used as multiple inputs to an operator. For
example, the values of a matrix M could be doubled by adding the matrix to itself using a
binary ADD operator.

There are two reasons why our lineage queries explicitly specify a path of operators.
The first is because this disallows ambiguous queries. Consider the query “what records
in T generated C ⊆ TD?” for the workflow in Figure 2-3. There are two possible operator
paths between T and TD – A, B, D and A, C, D – and it is not clear how the subsets of T

along each of the two paths should be combined. Some applications may use the union, the
intersection or arbitrarily pick one of the paths. However, although the semantics are unclear,
execute_query can be used as a building block to execute these higher-level queries.

The second is because many of the applications we have encountered (described in
Section 3.3) want to execute path-based lineage queries. For example, an application may
suspect that a specific operator is buggy, and want to inspect its inputs given a set of

29

anomalous workflow results. The next chapter will describe these applications in more detail,
and introduce the SubZero system, which stores, queries, and manages fine-grained lineage
metadata for high-throughput workflow applications.

30

3 High-throughput Lineage

This chapter investigates the design of a lineage management system to support the lineage
queries described in the previous chapter for high-throughput data processing systems
such as visualization systems. These types of data-analysis applications are quickly moving
beyond data presentation towards exploration and post-hoc analysis; it is not sufficient to
simply render a static graphic that contains outliers, because users want the ability to e.g.,
reassess the outlier data, and debug their analyses. Many such functionalities, including the
algorithms described in Chapter 4, rely on the ability to query the metadata that identifies
how input tuples are related to intermediate and output tuples, or lineage information.

Unfortunately, naively tracking these lineage relationships for each intermediate and
output record can be very storage and CPU intensive – the storage requirements alone easily
scales quadratically with the cardinality of the datasets and linearly with the number of
processing steps. The goal of this chapter is to develop a system that can easily incorpo-
rate custom analysis operators, and quickly execute lineage queries while satisfying hard
application-defined resource constraints.

3.1 I NTRODUCT ION
Many applications – visualization systems, database query plans, scientific analyses, business
processes – are naturally expressed as a workflow comprised of a sequence of operations
applied to raw input data to produce an output dataset or visualization. Like database
queries, such workflows can be complex, consisting up to hundreds of operations [59] whose
parameters or inputs vary between executions.

For example, the Ermac system described in Chapter 6 takes as input a visualization
specification that describes the data transformation, layout, and rendering operations,
compiles it into a directed-acyclic-graph of relational and custom operators, and executes
the operator graph to generate a visualization. When the user finds a surprising data point
in Ermac’s visualized result, she may want to better understand the source of the result.

31

At this step, it is helpful to be able to step backward through the processing pipeline to
examine how intermediate results changed from one data transformation step to another.
If the user finds an erroneous input, she may want to step forward to identify the derived
downstream outputs that depend on the erroneous value and possibly correct those results.

This debugging process of stepping backwards and forwards through the processing
pipeline extends beyond visualizations. Scientists such as astronomers (cleaning telescope
images), genomicists (aligning genomic sequences and cleaning gene expression data), and
earth scientists (processing satellite images) all use workflow-based processing systems and
want the ability to navigate forward and backward in their pipelines as part of the debugging
process [104].

Unfortunately, when the datasets are large, it is infeasible to examine all of the interme-
diate data at each step, so lineage is helpful to filter the datasets to the subset that actually
contributed to the result records that the user is interested in.

3.1.1 CHALLENGES W ITH EX I S T ING APPROACHES
Prior work in data lineage tracking systems has largely been limited to coarse-grained lineage
tracking [69, 86], which stores the graph of operator executions and data relationships at
the file or relational table level.

On the other hand, systems that track fine-grained lineage either follow an eager or
lazy approach. The first, popularized by Trio [113], eagerly materializes metadata about the
input data records that each output record depends on and uses this metadata to answer
backward lineage queries. The second approach, which we call black-box, simply records
coarse-grained lineage as the workflow runs, and materializes the lineage at when the user
executes a lineage query by re-running relevant operators in a tracing mode. Unfortunately,
neither technique is completely sufficient for general workflow applications.

First, applications often make heavy use of user-defined functions (UDFs), whose se-
mantics are opaque to the lineage system. Existing approaches conservatively assume that
every output record of a UDF depends on every input record, which limits the utility of a
fine-grained lineage system because it tracks a large amount of information without provid-
ing any insight into which inputs actually contributed to a given output. This necessitates
proper APIs so that UDF designers can expose fine-grained lineage information and operator
semantics to the lineage system.

Second, neither the eager nor black-box technique is optimal (with respect to storage
costs, runtime overhead, and query performance) are across all workflows. High-throughput
workflows can easily consume input datasets with millions of records and generate complex

32

relationships between groups of input and output records. Eagerly storing lineage can avoid
re-running some computationally intensive operators (e.g., an image processing operator
that detects a small number of stars in telescope imagery), but needs enormous amounts of
storage if every output depends on every input (e.g., an aggregation operation). In the latter
case, it may be preferable to recompute the lineage at query time. In addition, applications
will often have practical resource limitations and can only dedicate a percentage of their total
storage to lineage operations. Ideally, lineage systems would support a hybrid of approaches
and take application constraints into account when deciding which operators to store lineage
for.

Finally, both techniques are merely two extreme approaches for how to represent and
materialize lineage information. Understanding and exploiting the structure between the
groups of input and output records will help us develop more efficient lineage representations.
For example, suppose an operator adds 1 to each input record. The eager approach would
store each output record’s corresponding input record. Alternatively, this relationships could
be encoded as a function that maps an output record to the corresponding input record with
the same primary key, without needing to explicitly materialize any lineage information.
There is a need to identify representations are general, simple to express, and efficient.

3.1.2 CONTR IBUT IONS AND CHAPTER ROADMAP
In this chapter, we describe the design of SubZero, a fine-grained lineage tracking and
querying system for high-throughput applications. SubZero helps users perform exploratory
workflow debugging by executing a series of data lineage queries that walk backward to
identify the specific input records on which a given output depends and that walk forward
to find the outputs that a particular input record influenced. SubZero must manage input
to output relationships at a fine-grained record level.

SubZero seeks to address the above challenges in the context of scientific applications. We
interviewed scientists from several domains to understand their data processing workflows
and lineage needs (described in Section 3.3) and used the results to design a science-oriented
data lineage system.

In Section 3.5, we introduce a new lineage representation – Region Lineage – which
exploits locality properties that are prevalent in the scientific operators we encountered.
It addresses common relationships between groups of input and output records by storing
grouped or summary information rather than individual pairs of input and output records.
In addition, it generalizes the existing eager, Trio-style approach.

Alongside the region lineage model, we developed a lineage API that uniformly supports

33

our new model as well as the black-box approach. Section 3.6 introduces a set of concrete
Region Lineage Representations that vary from very general and potentially storage intensive,
to very efficient but restricted to a special class of operators. Developers decide which
representations are optimal for their operator and implement towards the corresponding
API.

Each region lineage representation must subsequently be encoded as physical bits and
indexed for fast lookups when executing a lineage query. Section 3.7 describes SubZero’s
various encoding and indexing options and their tradeoffs. Section 3.8 then presents the
optimizer that balances these tradeoffs with the user’s storage and runtime overhead budgets
to pick a globally optimal strategy.

One benefit of separating the lineage data model, the logical representation, and the
physical encoding is that the developer only needs to provide as many logical representations
as she wishes, and can let the runtime system to pick the best logical representation
and physical encoding. This is conceptually reminiscent to the notion of physical data
independence in database management systems. This independence property roughly states
that physical changes in how the data is stored (e.g., the data format, whether indices are
created) does not affect how the data is accessed by the client. This independence is also
what allows for query optimization, so that a query optimizer can pick from multiple physical
execution plans depending on how the data has been physically stored and its statistical
properties. Section 3.9 presents results from our two scientific lineage benchmarks that
suggest the necessity of an optimizer in a lineage runtime because of the extreme differences
between optimal and sub-optimal plans.

3.2 SC I ENT I F IC DATA PROCESS ING
In this section we introduce the key properties of scientific data processing systems, and
provide rationale about why we focus on this class of applications as opposed alternatives
such as general database systems or Hadoop-based data processing systems.

3.2.1 SC I ENT I F IC WORKFLOW PROPERT I E S
Scientific workflows are primarily defined by the types of data that their operators process.
Instead of relational tables (with set semantics), workflows process multi-dimensional arrays.
An array has a schema to which each cell1 conforms to. Array schemas distinguish between
dimension and value attributes. The values of a cell’s dimension attributes, termed a

1We denote a cell as the array equivalent of a relational record.

34

coordinate, uniquely identifies the cell; value attributes have no such restriction. For example,
if the application stores satellite images of the earth, the dimension attributes may be
latitude and longitude, and the value attributes may be the red, green and blue wavelength
intensities.

Locality
Scientific applications typically process data that models physical world, and consequently
have a natural notion of locality (e.g., latitude, longitude, time, voltage). These properties
can help constrain the types of lineage relationships between workflow inputs and outputs
so that we can develop efficient ways to represent the relationships.

3.2.2 WHY SC I ENT I F IC DATA PROCESS ING?
Throughput
The relative overhead of capturing fine-grained lineage fundamentally depends on the data-
processing throughput of the workflow execution system. By this yardstick, scientific systems
offer a particualrly challenging scenario given their high-throughput nature. As a simple
example, consider a system that only processes 1000 records at 1 record/second. The lineage
system can spend 1 minute to compute and store lineage metadata and incur a modest 6%
runtime penalty. On the other hand, if the system throughput is 1000 records/second, then
the same lineage overhead causes a 6,000% runtime slowdown!

0.01

0.10

1.00

PostgreSQL Python
Method

C
os

t (
se

cs
)

Method PostgreSQL Python

Figure 3-1: Cost of incrementing one million floats in PostgreSQL and Python+Numpy.

Figure 3-1 shows the results of a simple benchmark comparing PostgreSQL and Python+Numpy
for incrementing one million float values by one. The dataset is stored in a single-column
table as one million records in PostgreSQL and as a million cell NumPy array in Python.

35

There is a 3 orders-of-magnitude difference between the two approaches. Although not all
of the difference can be attributed the difference between iterator-based and vector-based
execution, it is clear that there is a large disparity in per-record processing times between
the two types of systems.

Note that many scientific applications use highly optimized matrix libraries such as
ScaLAPACK [31] that are significantly faster than Python+NumPy. The process costs in
these applications will be even faster, and thus, ability to manage the resource costs is even
more crucial.

User DefinedOperators
Most workflow systems such as Hadoop [110], Spark [122], and scientific systems support
custom operators in the form of user-defined functions. The lineage system depends on the
developer to instrument the custom operator to export the internal lineage information to
the lineage system through lineage API calls. However, the API design must be sufficiently
efficient so that the amortized overhead is comparable to or less than the base operator
execution costs. The microbenchmark in Figure 3-1 suggests that a low-overhead API
designed for science applications will naturally be applicable in general record-based systems
such as Hadoop or Spark.

Generality
The key concepts we used to design SubZero – physical independence, cost-based provenance
materialization, and support for user defined functions – are applicable to workflow-based
data processing systems irrespective of their data model or application domain. In fact,
our system design is general enough to be easily extended for other non-scientific workflow-
based systems. In addition, we present a simple but powerful lineage representation called
PayloadLineage that can be used to implement many the lineage storage techniques in
most existing fine-grained lineage systems. We further explore these relationships in the
discussion (Section 3.10).

3.3 USE CASES
We developed two benchmark applications after discussions with environmental scientists,
astronomists, and geneticists. The first is an image processing benchmark developed with
scientists at the Large Synoptic Survey Telescope (LSST) project. It is very similar to
environmental science requirements, so they are combined together. The second was developed

36

with geneticists at the Broad Institute2. Each benchmark consists of a workflow description,
a dataset, and lineage queries. We used the benchmarks to design the optimizations described
in this chapter. This section will briefly describe each benchmark’s scientific application, the
types of desired lineage queries, and application-specific insights.

3.3.1 ASTRONOMY

A!

B!

C! D!

Native Operator! User-defined Operator!

Figure 3-2: Diagram of LSST workflow. Each empty rectangle is a SciDB native operator
while the black-filled rectangles A-D are UDFs.

The Large Synaptic Survey Telescope (LSST) is a wide angle telescope slated to begin
operation in Fall 2015. A key challenge in processing telescope images is filtering out high
energy particles (cosmic rays) that create abnormally bright pixels in the resulting image,
which can be mistaken for stars. The telescope compensates by taking two consecutive
pictures of the same piece of the sky and removing the cosmic rays in software. The LSST
image processing workflow (Figure 3-2) takes two images as input and outputs an annotated
image that labels each pixel with the celestial body it belongs to. It first cleans and detects
cosmic rays in each image separately, then creates a single composite, cosmic-ray-free, image
that is used to detect celestial bodies. There are 22 SciDB built-in operators (blue solid boxes)
that perform common matrix operations, such as convolution, and four UDFs (red dotted
boxes labeled A-D). The UDFs A and B output cosmic-ray masks for each of the images.
After the images are subsequently merged, C removes cosmic-rays from the composite image,
and D detects stars from the cleaned image.

The LSST scientists are interested in three types of queries. The first picks a star in
the output image and traces the lineage back to the initial input image to detect bad input
pixels. The latter two queries select a region of output (or input) pixels and trace the
pixels backward (or forward) through a subset of the workflow to identify a single faulty

2http://www.broadinstitute.org/

37

http://www.broadinstitute.org/

operator. As an example, suppose the operator that computes the mean brightness of the
image generated an anomalously high value due to a few bad pixel, which led to further
mis-calculations. The astronomer might work backward from those calculations, identify the
input pixels that contributed to them, and filter out those pixels that appear excessively
bright.

Both the LSST and environmental scientists described workloads where the majority of
the data processing code computes output pixels using input pixels within a small distance
from the corresponding coordinate of the output pixel. These regions may be constant,
pre-defined values, or easily computed from a small amount of additional metadata. For
example, a pixel in the mask produced by cosmic ray detection (CRD) is set if the related
input pixel is a cosmic ray, and depends on neighboring input pixels within a radius of
3 pixels. Otherwise, it only depends on the related input pixel. They also felt that it is
sufficient for lineage queries to return a superset of the exact lineage. Although we do not
take advantage of this insight, this suggests future work in lossy compression techniques.

3.3.2 GENOMICS PRED ICT ION

Training!
Matrix!

Test!
Matrix!

Modeling phase! Testing phase!

E!

F! H!

G!

Native Operator! User-defined Operator!

Figure 3-3: Simplified diagram of genomics workflow. Each empty rectangle is a SciDB native
operator while the black filled rectangles are UDFs.

We have also been working with researchers at the Broad Institute on a genomics
benchmark related to predicting recurrences of medulloblastoma in patients. Medulloblastoma
is a form of cancer that spawns brain tumors that spread through the cerebrospinal fluid.
Pablo et. al [105] have identified a set of patient features that help predict relapse in
medulloblastoma patients that have been treated. The features include histology, gene
expression levels, and the existence of genetic abnormalities. The workflow (Figure 3-3) is a

38

two-step process that first takes a training patient-feature matrix and outputs a Bayesian
model. Then it uses the model to predict relapse in a test patient-feature matrix. The model
computes how much each feature value contributes to the likelihood of patient relapse. The
ten built-in operators (solid blue boxes) are simple matrix transformations. The remaining
UDFs extract a subset of the input arrays (E,G), compute the model (F), and predict the
relapse probability (H).

The model is designed to be used by clinicians through a visualization that generates
lineage queries. The first query picks a relapse prediction and traces its lineage back to the
training matrix to find supporting input data. The second query picks a feature from the
model and traces it back to the training matrix to find the contributing input values. The
third query points at a set of training values and traces them forward to the model, while
the last query traces them to the end of the workflow to find the predictions they affected.

The genomics benchmark can devote up-front storage and runtime overhead to ensure
fast query execution because it is an interactive visualization. Although this is application
specific, it suggests that scientific applications have a wide range of storage and runtime
overhead constraints.

3.4 ARCH ITECTURE

Workflow Engine!

C!

A! D

Data Store!

Optimizer! Lineage!
Query

Executor!

Queries! Lineage!Array!

Re-executor!

Lineage !
Runtime!

Constraints!

Encoder!

Lineage API!

Decoder!

Figure 3-4: The SubZero architecture.

SubZero records and stores lineage data at workflow runtime and uses it to efficiently
execute lineage queries. The input to SubZero is a workflow specification (the graph in
Workflow Engine), constraints on the amount of storage that can be devoted to lineage

39

tracking and the amount of workflow slowdown the user is willing to tolerate, and a sample
lineage query workload that the user expects to run. SubZero optimally decides the type of
lineage that each operator in the workflow will generate (the lineage strategy) in order to
maximize the performance of the expected query workload performance.

Figure 3-4 shows the system architecture. The solid and dashed arrows indicate the
control and data flow, respectively. The solid gray line indicates the Lineage API that the
Workflow Engine can call to access the SubZero lineage runtime. The colors distinguish
components that are used while the system is capturing lineage data (blue), executing a
lineage query (red), and running the SubZero optimizer (green).

Users interact with SubZero by defining and executing workflows (Workflow Engine),
specifying storage and runtime constraints to the Optimizer, and running lineage queries
(Query Executor). Each operator is additionally instrumented to list the region pair repre-
sentations (described in Section 3.6) it can generate, which defines the set of optimization
possibilities.

Each operator initially operates as a black-box (i.e., just records the names of the inputs
it processes) but over time the optimizer will change the operator’s strategy in terms of
which operators should generate lineage and how it should be encoded and indexed. As
operators process data, they use the Lineage API to write lineage data to the Lineage
Runtime. The Encoder then serializes the lineage before writing it to Operator Specific
Datastores. The Runtime may also send lineage and other statistics to the Optimizer, which
calculates statistics such as the amount of lineage that each operator generates.

SubZero periodically runs the Optimizer, which uses an Integer Programming Solver to
compute the new lineage strategy. On the right side, the Query Executor compiles lineage
queries into query plans that join the query data with lineage data. The Executor requests
lineage from the Runtime, which either reads and decodes materialized lineage or uses the
Re-executor to re-run operators and generate non-materialized lineage. It also sends statistics
(e.g., query fanout and fanin) to the optimizer that are used to refine future optimizations.

Given this overview, we now describe the different representations of fine-grained lineage
that the system can record (Section 3.6), the functionality of the Runtime, Encoder, and
Query Executor (Section 3.7), and finally the optimizer in Section 3.8.

3.5 L INEAGE REPRESENTAT IONS
Section 2.4 presented the logical lineage data model. However, the naive representation of
the logical model easily incurs very high resource overhead. To address this issue, this section
describes three representations, including the lazy approach introduced in the introduction

40

that substantially reduce the overhead.
We have pre-instrumented SubZero all built-in matrix operators (e.g., addition, mul-

tiplication, convolution) to generate lineage information in all three representations, and
provide an API for UDF designers to expose these relationships. If the API is not used, then
SubZero assumes an all-to-all relationship between every cell in the input arrays and every
cell in the output array.

3.5.1 CELL-LEVEL L INEAGE
Cell-level lineage is the naive approach that explicitly represents fine-grained lineage as a set
of input and output cell pairs. Although we model and refer to lineage as a mapping between
input and output cells, the SubZero implementation stores these mappings as references to
physical cell coordinates.

3.5.2 BLACK-BOX L INEAGE
SubZero does not require additional resources to store black-box lineage because the workflow
executor stores coarse-grained lineage by default. This is sufficient to re-run any previously
executed operator from any point in the workflow. In this representation, the lineage is only
materialized when the user executes a lineage query.

3.5.3 REG ION L INEAGE
Scientific applications often exhibit locality where sets of output cells depend on the same
set of input cells. For example, the LSST star detection operator finds clusters of adjacent
bright pixels and generates an array that labels each pixel with the star that it belongs to.
Every output pixel labeled Star X depends on all of the input pixels in the Star X region.

For this reason, it makes sense to explicitly represent this set-wise relationship using the
region lineage representation. Region lineage represents fine-grained lineage a set of region
pairs, where a region pair describes an all-to-all lineage relationship between a set of output
cells outcells and a set of input cells incellsi in each input array, Ii

P :

{(outcells, incells1, ..., incellsn)|outcells ⊆ OP ∧ incellsi ⊆ Ii
P }

Region lineage is an improvement over cell-level lineage for two reasons. First, based
on our experience instrumenting the two benchmark applications, region lineage is less
cumbersome to express and keep track of than cell-level lineage, and results in less code to
write. Second, region lineage is more resource efficient than cell-level lineage – in fact, region

41

lineage strictly outperforms cell-level lineage in all of the applications we have examined. For
this reason, and to avoid redundant text, later sections will exclusively discuss region pairs.

3.6 L INEAGE AP I
SubZero helps developers write operators that efficiently represent and store lineage. Whereas
the previous section introduced region lineage as part of the lineage data model, this section
presents several concrete representations of region lineage and the APIs that UDF developers
can use to generate lineage from within an operator. The next section will describe how the
difference representations are encoded for physical storage.

This section also introduces the mechanism that the runtime uses to control the which
lineage representation an operator should generate. Finally, we describe how SubZero re-
executes black-box operators during a lineage query. Table 3-5 summarizes the runtime
methods exposed to code within an operator. Table 3-6 summarizes operator methods that
the developer overrides to add lineage support.

For ease of explanation, this section is described in the context of the LSST operator
CRD (cosmic ray detection, depicted as A and B in Figure 3-2) that finds pixels containing
cosmic rays in a single image, and outputs an array of the same size. If a pixel contains a
cosmic ray, the corresponding cell in the output is set to 1, and the output cell depends on

Runtime API Method Description
lwrite(outcells, incells1, ...,incellsn) API to store lineage relationship.
lwrite(outcells, payload) API to store small binary payload instead of input

cells. Called by payload operators.

Table 3-5: Runtime methods that SubZero makes available to the operators.

Operator API Method Description
run(input_1,...,input_n,cur_reps) Execute the operator, generating lineage types in

cur_reps ⊆ {Full, Map, Pay, Comp, Blackbox}
mapb(outcell, i) Computes the input cells in inputi that contribute

to outcell.
mapf(incell, i) Computes the output cells that depend on

incell ∈ inputi.
mapp(outcell, payload, i) Computes the input cells in inputi that contribute

to outcell. This method has access to payload.
supported_representations() Returns the representations C ⊆ {Full, Map, Pay

Comp, Blackbox} that the operator can generate.

Table 3-6: Operator methods that the developer will override.

42

the 49 neighboring pixels within a 3 pixel radius. Otherwise the output cell is set to 0, and
only depends on the corresponding input pixel. A region pair is denoted (outcells, incells).

3.6.1 BAS IC OPERATOR STRUCTURE
The following code snippet is the basic structure of a SubZero operator:

class OpName:

def run(input_1, ..., input_n, cur_reps):

"""

Process the inputs, emit the output record

lineage representations specified in cur_reps

"""

pass

def supported_representations():

"""

Return the lineage representations the

operator supports

"""

pass

Each operator implements a run() method, which is called when inputs are available to
be processed. It is passed a list of lineage representations it should output in the cur_reps
argument; it writes out lineage data using the lwrite() method described below. The developer
specifies the representations that the operator supports (and that the runtime will consider)
by overriding the supported_representations() method. If the developer does not override
supported_representations(), SubZero assumes an all-to-all relationship between the inputs
and outputs. Otherwise, the operator automatically supports black-box lineage as well.

3.6.2 L INEAGE REPRESENTAT IONS
SubZero supports four region lineage representations (Full, Map, Pay, Comp) and black-box
lineage (Blackbox). cur_reps is set to Blackbox when the operator does not need to generate
any pairs (because black box lineage is always in use). Full lineage explicitly stores all region
pairs, and the other lineage representations reduce the amount of lineage that is stored by

43

partially computing lineage at query time using developer defined mapping functions. The
following sections describe the representations in more detail.

Full Lineage
Full lineage (Full) explicitly represents and stores all region pairs. It is straightforward to
instrument any operator to generate full lineage. The developer simply writes code that
generates region pairs and uses lwrite() to store the pairs. For example, in the following CRD
pseudocode, if cur_reps contains Full, the code iterates through each cell in the output,
calculates the lineage, and calls lwrite() with lists of cell coordinates. Note that if Full is
not specified, the operator can avoid running the lineage related code.

def run(image, cur_reps):

if "Full" in cur_reps:

for each cell in output:

if cell == 1:

neighs = get_neighbor_coords(cell)

lwrite([cell.coord], neighs)

else:

lwrite([cell.coord], [cell.coord])

Although this lineage mode accurately records the lineage data, it is potentially very
expensive to both generate and store. We have identified several widely applicable operator
properties that allow the operators to generate more efficient representations of lineage,
which we describe next.

Mapping Lineage
Mapping lineage (Map) compactly represents an operator’s lineage using a pair of mapping
functions. Many operators such as matrix transpose exhibit a fixed execution structure that
does not depend on the input cell values. These operators, called mapping operators, can
compute forward and backward lineage from a cell’s coordinates and array metadata (e.g.,
input and output array sizes) and do not need to access array data values.

This is a valuable property because mapping operators do not incur runtime and storage
overhead. For example, one-to-one operators, such as matrix addition, are mapping operators
because an output cell only depends on the input cell at the same coordinate, regardless of
the value. Developers implement a pair of mapping functions, mapf (cell, i)/mapb(cell, i),
that calculate the forward/backward lineage of an input/output cell’s coordinates, with

44

respect to the i’th input array. For example, a 2D transpose operator would implement the
following functions:

def map_b((x,y), i):

return [(y,x)]

def map_f((x,y), i):

return [(y,x)]

Most scientific operators (e.g., matrix multiply, join, transpose, convolution) are mapping
operators, and we have implemented their forward and backward mapping functions. Mapping
operators are depicted as the blue boxes in the astronomy (Figure 3-2) and genomics
(Figure 3-3) workflows.

Payload Lineage
Rather than storing the input cells in each region pair, payload lineage (Pay) stores a small
amount of data (a payload), and recomputes the lineage using a payload-aware mapping
function (mapp()). Unlike mapping lineage, the mapping function has access to the user-
stored binary payload. This mode is particularly useful when the operator has high fanin
and the payload is very small.

For example, suppose that the radius of neighboring pixels that a cosmic ray pixel
depends on increases with brightness, then payload lineage only stores the brightness
insteall of the input cell coordinates. (Payload operators) call lwrite(outcells, payload) to
pass in a list of output cell coordinates and a binary blob, and define a payload function,
mapp(outcell, payload, i), that directly computes the backward lineage of outcell ∈ outcells

from the outcell coordinate and the payload. The result are input cells in the i’th input
array. As with mapping functions, payload lineage does not need to access array data values.
The following pseudocode stores radius values instead of input cells:

def run(image, cur_reps):

if "Pay" in cur_reps:

for each cell in output:

if cell == 1:

lwrite([cell.coord], ’3’)

else:

lwrite([cell.coord], ’0’)

45

def map_p((x,y), payload, i):

return get_neighbors((x,y), int(payload))

In the above implementation, each region pair stores the output cells and an additional
argument that represents the radius, as opposed to the neighboring input cells. When a
backward lineage query is executed, SubZero retrieves the (outcells, payload) pairs that
intersect with the query and executes mapp on each pair. This approach is particularly
powerful because the payload can store arbitrary data – anything from array data values
to lineage predicates [56].i Thus, existing lineage systems such as that in Trio [113] and
Panda [56] can be readily implemented is SubZero. Operators D to G in the two benchmarks
(Figures 3-2 and 3-3) are payload operators.

Note that payload functions are designed to optimize execution of backward lineage
queries. While SubZero can index the input cells in full lineage, the payload is a binary
blob that cannot be easily indexed. A forward query must iterate through each (outcells,
payload) pair and compute the input cells using mapp before it can be compared to the
query coordinates.

Composite Lineage
Composite lineage (Comp) composes mapping and payload lineage. The mapping function
defines the default relationship between input and output cells, and results of the payload
function overwrite the default lineage if specified. For example, CRD can represent the
default relationship – each output cell depends on the corresponding input cell in the same
coordinate – using a mapping function, and write payload lineage for the cosmic ray pixels:

def run(image,cur_reps):

if "Comp" in cur_reps:

for each cell in output:

if cell == 1:

lwrite([cell.coord], 3)

else:

map_b defines default behavior

pass

def map_p((x,y), radius, i):

return get_neighbors((x,y), radius)

46

def map_b((x,y), i):

return [(x,y)]

Composite operators can avoid storing lineage for a significant fraction of the output
cells. Although it is similar to payload lineage in that the payload cannot be indexed to
optimize forward queries, the amount of payload lineage that is stored may be small enough
that iterating through the small number of (outcells, payload) pairs is efficient. Operators
A,B and C in the astronomy benchmark (Figure 3-2) are composite operators.

Note that a more general layered approach is possible, where the user defines n layers of
lineage representations and a higher layer overwrites the lineage represented by a lower layer.
In such a model, our composite lineage is a special case where n = 2. From our experience,
we have not encountered operators that warrant the added complexity.

3.6.3 OPERATOR RE -EXECUT ION
An operator stores black-box lineage when cur_reps equals Blackbox. When SubZero
executes a lineage query on an operator that stored black-box lineage, the operator is
re-executed in tracing mode. When the operator is re-run at lineage query time, SubZero
passes cur_reps = Full, which causes the operator to perform lwrite() calls. The arguments
to these calls are sent to the lineage query executor.

In order for re-execution to be correct (the lineage is identical to capturing the lineage
when the operator was first executed), operators need to be deterministic. In our execution
setting, determinism can be enforced by instrumenting every non-deterministic Python
runtime call and replay their results during re-execution.

Selective Re-execution
Rather than re-executing the operator on the full input arrays, SubZero could also reduce the
size of the inputs by applying bounding box predicates prior to re-execution. The predicates
would reduce both the amount of lineage that needs to be stored and the amount of data
that the operator needs to re-process.

We considered this approach and extended both mapping and full operators to compute
and store bounding box predicates. Unfortunately, we did not find it to be a widely useful
optimization. During query execution, SubZero must retrieve the bounding boxes for every
query cell, and either re-execute the operator over each cell’s corresponding bounding box, or
merge the bounding boxes for every cell and re-run the operator using the merged bounding
box predicate. Unfortunately, the former approach incurs an overhead on each execution (to
read the input arrays and apply the predicates) that quickly becomes a significant cost. In

47

the latter approach, the merged bounding box quickly expands to encompass the full input
array, which is equivalent to completely re-executing the operator, but incurs the additional
cost to retrieve the predicates. For these reasons, we did not further consider this approach.

3.7 IMPLEMENTAT ION
This section describes the Runtime, Encoder, and Query Executor components in greater
detail.

3.7.1 RUNT IME
In SciDB (and our prototype), we automatically store black-box lineage by using write-
ahead logging, which guarantees that black-box lineage is written before the array data,
and is “no overwrite” on updates. Region lineage is stored in a collection of BerkeleyDB
hashtable instances. We use BerkeleyDB to store region lineage to avoid the client-server
communication overhead of interacting with traditional DBMSes. We turn off fsync, logging
and concurrency control to avoid recovery and locking overhead. This is safe because the
region lineage is treated as a cache, and can always be recovered by re-running operators.

The runtime allocates a new BerkeleyDB database for each operator instance that stores
region lineage. Blocks of region pairs are buffered in memory, and bulk encoded using the
Encoder. The data in each region pair is stored as a unit (SubZero does not optimize across
region pairs), and the output and input cells use separate encoding schemes. The layout can
be optimized for backward (forward) queries by storing the output (input) cells as the hash
key. On a key collision, the runtime decodes, merges, and re-encodes the two hash values.
The next subsection describes how the Encoder serializes the region pairs.

3.7.2 ENCODER
While Section 3.6 presented efficient ways to represent region lineage, SubZero still needs to
store cell coordinates, which can easily be larger than the original data arrays. The Encoder
stores the input and output cells of a region pair (generated by calls to lwrite()) into one or
more hash table entries, specified by an encoding strategy. We say the encoding strategy is
backward optimized if the output cells are stored in the hash key, and forward optimized if
the hash key contains input cells.

We found that four basic strategies work well for the operators we encountered. – FullOne

and FullMany are the two strategies to encode full lineage, and PayOne and PayMany

encode payload lineage.

48

(0,1), (2,3)!

Hash Value! Hash Key!

(4,5),(6,7)!
Index!

(a) FullMany

#1234! (0,1)!
(2,3)!

(4,5),(6,7)!

Hash Value! Hash Key!

#1234!
#1234!

(b) FullOne

(0,1), (2,3)!payload!
Index!

(c) PayMany

payload! (0,1)!
(2,3)!payload!

(d) PayOne

Figure 3-7: Four examples of encoding strategies

Figure 3-7 depicts how the backward-optimized implementation of these strategies encode
a single region pair consisting of two output cells with coordinates (0, 1) and (2, 3) that
depend on two input cells with coordinates (4, 5) and (6, 7).

FullMany
FullMany uses a single hash entry with the set of serialized output cells as the key and
the set of input cells as the value (Figure 3-7a). Each coordinate is bitpacked into a single
integer if the array is small enough. We also create an R∗-tree on the cells in the hash key
to quickly find the entries that intersect with the query. This index uses the dimensions of
the array as its keys and identifies the hash table entries that contain cells in particular
regions. The figure shows the unserialized versions of the cells for simplicity. FullMany is
most appropriate when the lineage has high fanout because it only needs to store the output
cells once.

FullOne
If the fanout is low, FullOne more efficiently serializes and stores each output cell as the
hash key of a separate hash entry. The hash value stores a reference to a single entry
containing the input cells (Figure 3-7b). This implementation doesn’t need to compute and
store bounding box information and doesn’t need the spatial index because each input cell
is stored separately, so queries execute using direct hash lookups.

49

PayMany and PayOne
For payload lineage, PayMany stores the lineage in a similar manner as FullMany, but
stores the payload as the hash value (Figure 3-7c). PayOne creates a hash entry for every
output cell and stores a duplicate of the payload in each hash value (Figure 3-7d).

Alternative Approaches
We tried a number of possible serialization techniques and found that complex encodings
incur inordinately high encoding costs without noticeably reduced storage costs. Thus we
don’t present these techniques in the experimental results. Some of the techniques include:

1. Compute and store the bounding box of a set of cells, C, along with cells in the
bounding box but not in C.

2. Logically partition the N ×M array into a coarse N
gridsize ×

M
gridsize grid. For each grid

cell that contains a cell in the lineage, record that the grid cell is active as well as the
corresponding offsets within the grid cell that are part of the lineage. If the entire grid
cell is part of the lineage, set a special bit instead of explicitly storing every offset.

3. Run-length encode the cells in row-major or column-major order.
4. gzip compress the resulting BerkeleyDB file. This method is effective at compressing

the database file by up to 3× (on a synthetic, highly structured data file). However
the resulting file cannot be directly queried and must be decompressed first.

3.7.3 L INEAGE AND STORAGE STRATEGY
The Optimizer picks a Lineage Strategy that spans the entire workflow instance. It picks one
or more Storage Strategies for each operator. Each storage strategy is fully specified by the
tuple:

(Representation, Encoding, Direction)

Where:

Representation ∈ {Full, Map, Pay, Comp, Blackbox} (3.1)

Encoding ∈ {FullMany, FullOne, PayMany, PayOne} (3.2)

Direction ∈ {←,→} (3.3)

50

For example, (Payload, PayMany,←) will generate payload lineage, encode it using
PayMany, and optimize the storage for backward lineage queries. SubZero can use multiple
storage strategies for each operator to optimize for different query types.

3.7.4 QUERY EXECUT ION
The Query Executor iteratively executes each step in the lineage query path by joining the
lineage with the coordinates of the query cells, or the intermediate cells generated from
the previous step. The output at each step is a set of cell coordinates that is compactly
stored in an in-memory boolean array with the same dimensions as the input (backward
query) or output (forward query) array. A bit is set if the intermediate result contains the
corresponding cell. For example, suppose we have an operator P that takes as input a 1× 4
array. Consider a backwards query asking for the lineage of some output cell C of P . If the
result of the query is 1001, this means that C depends on the first and fourth cell in P ’s
input.

We chose the in-memory array because many operators have large fanin or fanout,
and can easily generate several times more results (due to duplicates) than are unique.
De-duplication avoids wasting storage and saves work. Similarly, the executor can close an
operator early if it detects that all of the possible cells have been generated.

Entire Array Optimization
We also implement an entire array optimization to speed up queries where all of the bits
in the boolean array are set. For example, this can happen if a backward query traverses
several high-fanin operators or an all-to-all operator such as matrix inversion. In these cases,
calculating the lineage of every query cell is very expensive and often unnecessary. Many
operators (e.g., matrix multiply or inverse) can safely assume that the forward (backward)
lineage of an entire input (output) array is the entire output (input) array. This optimization
is valuable when it can be applied – it improved the query performance of a forward query
in the astronomy benchmark that traverses an all-to-all-operator by 83×.

In general, it is difficult to automatically identify when the optimization’s assumptions
hold. Consider a concatenate operator that takes two 2D arrays A, B with shapes (1, n) and
(1, m), and produces an (1, n+m) output by concatenating B to A. The optimization would
produce different results, because A’s forward lineage is only a subset of the output. We
currently rely on the programmer to manually annotate operators where the optimization
can be applied.

51

3.8 L INEAGE STRATEGY OPT IM IZER
Having described the basic storage strategies implemented in SubZero, we now describe our
lineage storage optimizer. The optimizer’s objective is to choose a set of storage strategies
that minimize the cost of executing the workflow while keeping storage overhead within
user-defined constraints. We formulate the task as an integer programming problem, where
the inputs are a list of operators, strategy pairs, disk overheads, query cost estimates, and a
sample workload that is used to derive the frequency with which each operator is invoked in
the lineage workload. Additionally, users can manually specify operator specific strategies
prior to running the optimizer.

The formal problem description is stated as:

minx
∑

i pi ∗
(
minj|xij=1 qij

)
+ ϵ ∗

∑
ij(diskij + β ∗ runtimeij) ∗ xij

s.t. ∑
ij diskij ∗ xij ≤ diskmax∑
ij runtimeij ∗ xij ≤ runtimemax

∀i

(∑
0≤j<M xij

)
≥ 1

∀i,jxij ∈ {0, 1}

user specified strategies
xij = 1 ∀i,jxij ∈ U

Here, xij = 1 if operator i stores lineage using strategy j, and 0 otherwise. diskmax is the
maximum storage overhead specified by the user; qij , runtimeij , and diskij , are the average
query cost, runtime overhead, and storage overhead costs for operator i using strategy j

as computed by the cost model. pij is the probability that a lineage query in the workload
accesses operator i, and is computed from the sample workload. A single operator may store
its lineage data using multiple strategies.

The goal of the objective function is to minimize the cost of executing the lineage workload,
preferring strategies that use less storage. When an operator uses multiple strategies to store
its lineage, the query processor picks the strategy that minimizes the query cost. The min
statement in the left hand term picks the best query performance from the strategies that
have been picked (j|xij = 1). The right hand term penalizes strategies that take excessive
disk space or cause runtime slowdown. β weights runtime against disk overhead, and ϵ is set
to a very small value to break ties. A large ϵ is similar to reducing diskmax or runtimemax.

We heuristically remove configurations that are clearly non-optimal, such as strategies
that exceed user constraints, or are not properly indexed for any of the queries in the

52

Strategy Description
Astronomy Benchmark

BlackBox All operators store black-box lineage
BlackBoxOpt Like BlackBox, uses mapping lineage for built-in-operators.
FullOne Like BlackBoxOpt, but uses FullOne for UDFs.
FullMany Like FullOne, but uses FullMany for UDFs.
Subzero Like FullOne, but stores composite lineage

using PayOne for UDFs.
Genomics Benchmark

BlackBox UDFs store black-box lineage
FullOne UDFs store backward optimized FullOne
FullMany UDFs store backward optimized FullMany
FullForw UDFs store forward optimized FullOne
FullBoth UDFs store FullForw and FullOne
PayOne UDFs store PayOne
PayMany UDFs store PayMany
PayBoth UDFs store PayOne and FullForw

Table 3-8: Lineage Strategies for Benchmark Experiments.

workload (e.g., forward optimized when the workload only contains backward queries). The
optimizer also picks mapping functions over all other classes of lineage.

We solve the ILP problem using the simplex method in GNU Linear Programming Kit.
The solver’s performance characteristics have been well studied [1] and takes about 1ms to
solve for our science benchmarks.

3.8.1 QUERY-T IME OPT IM IZER

While the lineage strategy optimizer picks the optimal lineage strategy, the executor must
still pick between accessing the lineage stored by one of the lineage strategies, or re-running
the operator. The query-time optimizer consults the cost model using statistics gathered
during query execution and the size of the query result so far to pick the best execution
method. In addition, the optimizer monitors the time to access the materialized lineage. If it
exceeds the cost of re-executing the operator, SubZero dynamically switches to re-running
the operator. This bounds the worst case performance to 2× the black-box approach.

53

3.9 EXPER IMENTS
In the following subsections, we first describe how SubZero optimizes the storage strategies
for the real-world benchmarks described in Section 3.3, then compare several of our lineage
storage techniques with black-box level only techniques. The astronomy benchmark shows
how our region lineage techniques improve over cell-level and black-box strategies on a
sparse image processing workflow. The genomics benchmark illustrates the complexity in
determining an optimal lineage strategy and the value of using an optimizer.

The SubZero prototype is written in Python and uses BerkeleyDB for the persistent
store, and libspatialindex for the spatial index. We don’t believe the choice of language is a
affects our main conclusions because the main bottlenecks are storage, rather than CPU,
related. The microbenchmarks are run on a 2.3 GHz linux server with 24 GB of RAM,
running Ubuntu 2.6.38-13-server. The benchmarks are run on a 2.3 GHz MacBook Pro with
8 GB of RAM, a 5400 RPM hard disk, running OS X 10.7.2.

Overall, our findings are that:

• An optimal strategy heavily relies on operator properties such as fanin, and fanout,
the specific lineage queries, and query execution-time optimizations. The difference
between a sub-optimal and optimal strategy can be so large that an optimizer-based
approach is crucial.

• Payload, composite, and mapping lineage are extremely effective and low overhead
techniques that greatly improve query performance, and are applicable across a number
of scientific domains. In particular, the composite technique can exploit applications
with sparse arrays (such as astronomy datasets) to reduce the amount of payload
lineage to store.

• SubZero can improve the LSST benchmark queries by up to 10× compared to naively
storing the region lineage (similar to what cell-level approaches would do) and up to
255× faster than black-box lineage. The runtime and storage overhead of the optimal
scheme is up to 30 and 70× lower than cell-level lineage, respectively, and only 1.49
and 1.95× higher than executing the workflow.

• Even though the genomics benchmark executes operators very quickly, SubZero can
find the optimal mix of black-box and region lineage that scales to the amount of
available storage. SubZero uses a black-box only strategy when the available storage
is small, and switches from space-efficient to query-optimized encodings with looser
constraints. When the storage constraints are unbounded, SubZero improves forward
queries by over 500× and backward queries by 2-3×.

54

3.9.1 ASTRONOMY BENCHMARK
In this experiment, we run the Astronomy workflow with five backward queries and one
forward query as described in Section 3.3.1. The 22 built-in operators are all expressed
as mapping operators and the UDFs consist of one payload operator that detects celestial
bodies and three composite operators that detect and remove cosmic rays. This workflow
exhibits considerable locality (stars only depend on neighboring pixels), sparsity (stars are
rare and small), and the queries are primarily backward queries. Each workflow execution
consumes two 512×2000 pixel (8MB) images (provided by LSST) as input, and we compare
the strategies in Table 3-8.

Overhead

0
500

1000
1500

0
500

1000
1500

15 15 1051847 30

37 37 10301666 55

D
isk C

ost
R

untim
e

BlackBox BlackBoxOpt FullMany FullOne SubZero
Storage Strategies

R
un

tim
e

D
is

k
 (

se
c)

 (
M

B
)

Strategy BlackBox
BlackBoxOpt

FullMany
FullOne

SubZero

Figure 3-9: Astronomy Benchmark: disk and runtime overhead.

Figure 3-9 plots the disk and runtime overhead for each of the strategies. BlackBox and
BlackBoxOpt identically show the base cost to execute the workflow and the size of the
input arrays – the goal is to be as close to these bars as possible.

FullOne and FullMany both require considerable storage space (66×, 53×) because
the three cosmic ray operators generate a region pair for every input and output pixel at
the same coordinates. The runtime overhead is closely related to the disk costs, both Full

approaches impact the workflow execution the most (6× and 44×, respectively.) Despite
using less storage space FullMany has a higher runtime overhead to account for constructing
the spatial index on the output cells.

The SubZero optimizer instead picks composite lineage that only stores payload lineage
for the small number of cosmic rays and stars. This reduces the runtime and disk overheads
to 1.49× and 1.95× the workflow inputs. By comparison, the intermediate and final result

55

arrays amount to 11.5× the workflow inputs, and thus the lineage storage overhead is
comparably negligible.

Query Performance

1

10

100

BlackBox BlackBoxOpt FullMany FullOne SubZero
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0
BQ 1

BQ 2
BQ 3

BQ 4
FQ 0

FQ 0 Slow

Figure 3-10: Astronomy Benchmark: query costs.

Figure 3-10 compares lineage query execution costs. BQ x and FQ x respectively stand
for backward and forward query x. FQ0Slow executes the lineage query as normal, whereas
the rest of the queries use the entire array optimization described in Section 3.7.4. Comparing
FQ0Slow and FQ0, the all-to-all optimization improves the query performance by 83×
because it can completely avoid the overhead of fine-grained lineage once every array cell is
part of the query. A natural extension is to statically determine if a lineage query includes
an intermediate all-to-all operator along its path, and switch to coarse-grained lineage if it
is safe (Section 3.7.4).

BlackBox must re-run each operator and takes up to 100 secs per query. The difference
bteween BlackBox and its runtime in Figure 3-9 constitutes the overhead of capturing
lineage from every operator. BlackBoxOpt can avoid rerunning the mapping operators, but
still re-runs and captures lineage from the computationally intensive UDFs.

Storing region lineage reduces the cost of executing the backward queries by 34×
(FullMany) and 45× (FullOne) on average. SubZero benefits further by only reading
lineage data for the array cells that contain stars or cosmic rays, and executing mapping
functions for the majority of the cells. This allows it to execute 255× faster on average.

56

3.9.2 GENOMICS BENCHMARK
In this experiment, we run the genomics workflow and execute a lineage workload with an
equal mix of forward and backward lineage queries (Section 3.3.2). There are 10 built-in
mapping operators, and the 4 UDFs are all payload operators. In contrast to the astronomy
workflow, these UDFs do not exhibit significant locality, and perform data shuffling and
extraction operations that are not amenable to mapping functions. In addition, the operators
perform fast and simple calculations so there is a less pronounced trade off between re-
executing the workflow and accessing region lineage. In fact, there are cases where using the
materialized lineage data is slower than the black box approach.

The dataset provided to us is a 56×100 matrix of 96 patients and 55 health and genetic
features. Although the dataset is small, its structure is representative of similar datasets
such as microarray gene expression data. Additionally, future datasets are expected to come
from a larger group of patients, so we constructed larger datasets by replicating the patient
data. The query performance and overheads scaled linearly with the size of the dataset
(since costs primarily scale with respect to the size of the lineage) and so we report results
for the dataset scaled by 100×.

The goal of this experiment is to explore the value of using a query optimizer as compared
to picking a single static storage strategy for all of the operators. We find that the best
storage strategy depends on a large number of factors including the operator runtime, lineage
fanin and fanout, encoding costs, and user constraints.

We first compare several different static strategies (Table 3-8) with and without the
query-time optimizer (Section 3.8.1) and then show how varying user constraints changes
how the optimizer picks lineage strategies.

Query-TimeOptimizer
This experiment compares the strategies in Table 3-8 with and without the query-time
optimization described in Section 3.8.1. Each operator uses mapping lineage if possible, and
otherwise stores lineage using the specified strategy. The majority of the UDFs generate
region pairs that contain a single output cell. As mentioned in previous experiments,
payload lineage stores very little binary data, and incurs less overhead than the full lineage
approaches (Figure 3-11). Storing both forward and backward-optimized lineage (PayBoth

and FullBoth) requires significantly more overhead – 8 and 18.5× more space than the
input arrays, and a corresponding 2.8 and 26× runtime slowdown.

Figure 3-12a highlights how query performance can degrade if the executor blindly joins
queries with mismatched indexed lineage (e.g., backward-optimized lineage with forward

57

0

50

100

150

0

50

100

150

8 897364161 186073

2 31452754 51632

D
isk C

ost
R

untim
e

BlackBox FullBoth FullForw FullMany FullOne PayBoth PayMany PayOne
Storage Strategies

R
un

tim
e

D
is

k
 (

se
c)

 (
M

B
)

Strategy BlackBox
FullBoth

FullForw
FullMany

FullOne
PayBoth

PayMany
PayOne

Figure 3-11: Genomics benchmark: disk and runtime overhead.

queries)3. For example, FullForw degraded backward query performance by up to 520×. For
example, BQ1 ran slower because the query path contains several large fanin operators, which
generates so many intermediate results that performing index lookups on each intermediate
result is slower than re-running the operators. Finally, the forward optimized strategies
improved the performance of FQ0 and FQ2 because the fanout is low.

Figure 3-12b – note the different domain of the Y-axis – shows that the query-time
optimizer executes the queries as fast as, or faster than, BlackBox. In general this cannot
be guaranteed because it requires accurate statistics and cost estimation [77], however the
optimizer can limits the query performance degradation to 2× by dynamically switching to
the BlackBox strategy. Overall, the backward and forward queries improved by up to 2 and
25×, respectively.

Lineage Strategy Optimizer
The above experiments compared many static strategies, each with different performance
characteristics depending on the operator and query, and found that picking storage strategies
on a per-operator basis is valuable. We now evaluate the SubZero optimizer on the genomics
benchmark by ignoring the runtime constraint and varying the storage constraint from 1MB
(only stores the input arrays) to 100MB (effectively unconstrained).

In these experiments we do not set a bound on the runtime overhead for two reasons.
First, as we will see, the runtime overhead correlates with the storage costs so the graphs
would be very similar (albeit scaled). Second, applications are typically willing to tolerate
50% to 200% runtime slowdown, however given those constraints SubZero would consistently

3All comparisons are relative to BlackBox

58

1e−02

1e+00

1e+02

BlackBox FullBoth FullForw FullMany FullOne PayBoth PayMany PayOne
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0 BQ 1 FQ 0 FQ 1

(a) Without query-time optimizer (Y-axis ranges from 1e-02 to 1000.)

0.1

10.0

BlackBox FullBoth FullForw FullMany FullOne PayBoth PayMany PayOne
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0 BQ 1 FQ 0 FQ 1

(b) With query-time optimizer (Y-axis ranges from 1e-03 to 10.)

Figure 3-12: Genomics benchmark: query costs with and without the query-time optimizer
(Section 3.8.1.)

choose the BlackBox strategy, which does not reveal any insights.

Figures 3-13 and 3-14 illustrate that SubZero can successfully pick more storage intensive
strategies that are predicted to improve the benchmark queries as the storage constraint is
relaxed. SubZero chooses BlackBox when the constraint is too small (<20MB), and stores
forward and backward-optimized lineage that benefits all of the queries when the minimum
amount of storage is available (20MB). Materializing further lineage has diminishing storage-
to-query benefits. With 100MB, SubZero uses 50MB to forward-optimize the UDFs using
(MANY, ONE), which reduces the forward queries to sub-second latencies. This is because
the UDFs have low fanout, so each join in the query path is a small number of hash lookups.

59

0
20
40
60
80

0
20
40
60
80

8 8 8 28 7712

2 2 2 16 426

D
isk C

ost
R

untim
e

BlackBox SubZero1 SubZero10 SubZero20 SubZero50 SubZero100
Storage Strategies

R
un

tim
e

D
is

k
 (

se
c)

 (
M

B
)

Strategy BlackBox
SubZero1

SubZero10
SubZero20

SubZero50
SubZero100

Figure 3-13: Genomics benchmark: disk and runtime overhead when varying SubZero storage
constraints.

0.1

10.0

BlackBox SubZero1 SubZero10 SubZero100 SubZero20 SubZero50
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0 BQ 1 FQ 0 FQ 1

0.1

10.0

BlackBox SubZero1 SubZero10 SubZero100 SubZero20 SubZero50
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0 BQ 1 FQ 0 FQ 1

0.1

10.0

BlackBox SubZero1 SubZero10 SubZero100 SubZero20 SubZero50
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0 BQ 1 FQ 0 FQ 1

Figure 3-14: Genomics benchmark: query costs when varying SubZero storage constraints.

3.9.3 MICROBENCHMARKS
It it can be difficult to distinguish the sources of benefits in the above end-to-end benchmark
experiments. The following experiments explore the key differences between the prevailing
strategies in terms of overhead and query performance. The comparisons use an operator
that generates synthetic lineage data with tunable parameters. We will show results from
varying the dominant parameters – fanin, fanout and payload size (for payload lineage).

Experiment Setup
Each experiment processes and outputs a 3.8MB 1000x1000 array, and generates lineage
for 10% of the output cells. The results scaled close to linearly as the number of output

60

cells with lineage varies. A region pair is randomly generated by selecting a cluster of
output cells with a radius defined by fanout, and selecting fanin cells in the same area
from the input array. We generate region pairs until the total number of output cells is
equal to 10% of the output array. The payload strategy uses a payload size of 4×fanin

bytes (the payload is expected to be very small). We compare several backward optimized
strategies (← FullMany, ← FullOne, ← PayMany, ← PayOne), one forward lineage
strategy (→ FullOne), and black-box (BlackBox). We first discuss the overhead to store
and index the lineage, then comment on the query costs.

Overhead

Fanout: 1 Fanout: 100

0

10

20

30

0

10

20

30

●●●●●●

●●●●●●

●●●●●● ●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

D
isk

R
untim

e

0 20 40 60 80 100 0 20 40 60 80 100
Fanin

R
un

tim
e

(s
ec

)

D
is

k
(M

B
)

Strategy
● <− PayMany

<− PayOne
<− FullMany
<− FullOne

−> FullOne
BlackBox

Figure 3-15: Microbenchmarks: disk and runtime overhead

Figure 3-15 compares the runtime and disk overhead of the different strategies. The
best full lineage strategy differs based on the operator fanout. FullOne is superior when
fanout ≤ 5 because it doesn’t need to create and store the spatial index. The crossover point
to FullMany occurs when the cost of duplicating hash entries for each output cell in a region
pair exceeds that of the spatial index. The overhead of both approaches increases with fanin.
In contrast, payload lineage has a much lower overhead than the full lineage approaches and
is independent of the fanin because the payload is typically small and does not need to be
encoded. When the fanout increases to 50 or 100, PayMany and FullMany require less
than 3MB and 1 second of overhead. The forward optimized FullOne is comparable to the
other approaches when the fanin is low. However, when the fanin increases it can require up

61

to fanin× more hash entries because it creates an entry for every distinct input cell in the
lineage. It converges to the backward optimized FullOne when the fanout and fanin are
high. Finally, BlackBox has nearly no overhead.

Query Performance

Fanout: 1 Fanout: 100

0.025

0.050

0.075

0.100
● ● ●

● ● ●

0 20 40 60 80 100 0 20 40 60 80 100
Fanin

Q
ue

ry
 C

os
t (

se
c)

Strategy ● <− PayMany <− PayOne <− FullMany <− FullOne

Figure 3-16: Microbenchmarks: backward lineage queries, only backward-optimized strategies

This experiment (Figure 3-16) shows the costs of executing a backward lineage query
when the storage strategy is backward-optimized and the operator fanin and fanout are
varied. The query performance scales almost linearly with the number of cells so we fix the
number of cells at 1000.

There is a clear difference between FullMany or PayMany, and FullOne or PayOne,
due to the additional cost of accessing the spatial index. Payload lineage performs inde-
pendently of the fanin, and is similar to, but not consistently faster than, Full lineage.
Finally (not shown), using a mis-matched index (e.g, using forward-optimized lineage for
backward queries) slows query performance by up to two orders of magnitude as compared
to BlackBox.

As a point of comparison (not shown), BlackBox takes between 2 (fanout=1) to 20
(fanout=100) seconds to execute a query where fanin=1 and around 0.7 seconds when
fanin=100.

3.10 D I SCUSS ION AND FUTURE D IRECT IONS
The experiments show that the best strategy is tied to the operator’s lineage properties,
and that there are orders of magnitude differences between different lineage strategies.
Science-oriented lineage systems should seek to identify and exploit operator fanin, fanout,
and redundancy properties. This section addresses the generality of our techniques to other

62

scientific and non-scientific domains, and outlines a number of promising directions for future
research.

3.10.1 GENERAL I TY TO SC I ENCE APPL ICAT IONS
Many scientific applications – particularly sensor-based or image processing applications
like environmental monitoring or astronomy – exhibit substantial locality (e.g., average
temperature readings within an area) that can be used to define payload, mapping or
composite operators. As the experiments show, SubZero can record their lineage with less
overhead than operators that only support full lineage.

When locality is not present, as in the genomics benchmark, the optimizer may still
be able to find opportunities to record lineage if the constraints are relaxed. An approach
that supports lineage at variable granularities is a promising alternative because it can to
simplify the process of instrumenting operators for lineage. Developers can define coarser
relationships between input and outputs (e.g., specify lineage as a bounding box that may
contain inputs that didn’t contribute to the output), which is often straight-forward as
compared to keeping track of the exact lineage relationship. SubZero could also perform
lossy compression by storing lineage at a coarser granularity when resources are limited.

3.10.2 GENERAL I TY TO DATA APPL ICAT IONS
The following subsection describes three design principles that apply to provenance manage-
ment in general data processing systems.

Physical Data Independence
Physical data independence is a well understood topic in the database literature, and it
similarly applies to lineage systems. Decoupling the lineage model from how the lineage is
represented and encoded is the mechanism that enables an optimizer to pick the appropriate
lineage strategy based on lineage statistics and query workload. This is analagous to the
database query optimizer, which picks the best join execution (e.g., hash join vs sort merge
join) depending on the type of query, cardinality estimations, and available indices and
views.

Many existing lineage-tracking systems [53, 73, 113] define a fixed storage format and
indexing structure that is used for all lineage data in the system. For example, the RAMP [53]
system for MapReduce [37] physically co-locates output records with the IDs the records’
operator lineage in order to speed up backward lineage queries. This design makes it

63

challenging to change the encoding or storage schemes and precludes alternative physical
layouts that may, for example, be optimized for forward lineage queries.

SystemDesign and Lineage API
The system design as described in Section 3.4 does not make any assumptions about the
data-processing system other than that it is an operator-based workflow system. Most
modern data-processing systems are operator-based [7, 16, 37, 58, 122] and we believe the
design can be re-used for these other workflow systems. In addition, the lineage API provides
a simple mechanism, via the cur_reps argument passed to the operator, for the runtime
system to manage what lineage is written from the operator. This mechanism enables the
optimizer and is used to dynamically generate an operator’s lineage information during the
execution of a lineage query.

Payload Lineage
The payload lineage representation is a simple and flexible approach that can work across
data processing systems. For example, the predicate-based lineage in Trio [113] can be
implemented by encoding the predicate as the binary payload and executing a filter query
based on the predicate inside the map_p() method. It can also encode the input record
identifiers in RAMP [53].

3.10.3 FURTHER PERFORMANCE OPPORTUN IT I E S
The results in this chapter have shown the value of a lineage-oriented optimizer. However,
as the experiment in Section 3.9.2 mentions, the runtime overhead of a lineage system can
often be more than applications are willing to tolerate. More research is needed to further
reduce this overhead (in absolute terms) to acceptable levels.

Selective Lineage
In this work, we assume each operator generates, and the runtime stores, all of the lineage
relationships for the operator. In reality, the application may prioritize a small subset of the
results (e.g., new celestial bodies in LSST) over the rest (e.g., empty space or existing stars).
The lineage system can significantly reduce its resource overheads by only storing lineage for
the prioritized subset.

Composite lineage is a simple application of this insight; it explicitly stores the high
priority lineage and represents the rest using a mapping function. However, a general

64

mechanism to selectively store an operator’s lineage information is needed because it is not
always possible to define such a mapping function. Exploring how the developer expresses
filtering criteria and how the runtime can correctly and efficiently make use of this information
is an interesting research direction.

Approximate Lineage
Rather than supporting exact lineage queries, some applications are willing to tolerate
lineage results that are imprecise. In other words, results that are a superset of the exact
lineage. For example, the LSST astronomers will visually inspect an output cell’s lineage as
images on the screen and want to use the lineage system to zoom into a relevant portion of
the sky.

One approach is for the lineage runtime system to store lineage data using a lossy
compression algorithm and ensure that the approximation errors propogate through the
workflow. However this approach reduces the storage requirements at the cost of additional
runtime overhead for compression.

An alternative is to extend the lineage API to support multi-granularity lineage. Although
our region provenance encodings are applicable to a large class of scientific operators, if may
be difficult to define mapping functions or the correct lwrite calls for complex UDFs. In these
cases, the developer may opt to adopt a coarser definition of lineage by specifying coarse
regions of input cells. This gives the application control over the amount of approximation,
and also reduces the amount of lineage generated by the operator.

3.10.4 L INEAGE SEMANT ICS
As hinted in Section 2.1, defining the proper semantics for a given operator, or an entire
workflow, can be very difficult because it is application specific and is not meant for “mere-
mortals”. For example, tracking both explicit (value used to compute result value) and implicit
(input used in the control flow) dependencies in the operators is a necessary approach to
guarantee reproducibility. On the other hand, if the lineage use case is for manual debugging,
then tracking implicit flows may not be necessary.

Rather than implementing provenance semantics and then executing lineage queries, an
alterative approach is to specify the semantics of a provenance workload and for the system
to suggest different forms of operator semantics that are necessary to accurately execute
the provenance queries. This may simplify the need for the developer to both reason about
provenance semantics and instrument the operators. The key challenge in this approach is

65

to develop a robust set of provenance query-level semantics that are useful for a large class
of applications, yet simple enough to be analyzed.

3.10.5 US ING L INEAGE
As evidenced in the experiments, aggregation operators that compute statistics over large
subsets of their inputs will result in very large intermediate results (up to the size of the
entire input arrays) during the execution of a lineage query results. In these cases, a lineage
query will generate a complete, but perhaps, imprecise result. However, users typically
execute lineage queries in order to debug an analysis result and an imprecise may not be
useful. This observation suggests that, in order to make lineage metadata useful for users,
additional algorithms need to be developed to process the lineage query results based on
classes of debugging needs.

As a simple example, consider a genomics workflow (Section 3.3.2) that computes the
average gene expression per patient. The user is surprised that patienti’s average expression
levels are very high and queries for that result’s lineage. SubZero will accurately return all
of patienti’s gene expression values, however there can be hundreds of thousands of genes
and the user must still comb through them to determine which genes are most responsible.
In these scenarios, it would be desirable to automatically order subsets of the lineage by an
“importance” criteria. Chapter 4 explores this idea further in the context of relational SQL
queries.

3.11 CONCLUS ION
We introduced SubZero, a scientific-oriented lineage storage and query system that stores a
mix of black-box and fine-grained lineage. We explored the design and implementation of
an optimization framework that picks the lineage representation on a per-operator basis in
order to maximize expected lineage query performance while staying within user constraints.
In addition, we developed region lineage, which explicitly represents lineage relationships
between sets of input and output data elements, along with a number of efficient encoding
schemes. For the scientific applications we tested, it can significantely outperform the
cell-by-cell lineage that existing systems store.

SubZero is heavily optimized for operators that can deterministically compute lineage from
array cell coordinates and small amounts of operator-generated metadata. UDF developers
expose lineage relationships by calling the runtime API and/or implementing mapping
functions.

66

Our experiments are run on two application benchmarks – an image processing application
in astronomy that exhibits significant lineage locality and data sparsity, and a machine
learning application in genomics that does not exhibit locality and operates on dense data.
The results suggest that many scientific operators can use our techniques to dramatically
reduce the amount of redundant lineage that is generated and stored. This helps improve
query performance by up to 10× while using up to 70× less storage space as compared to
existing cell-based strategies. The optimizer successfully scales the amount of lineage stored
based on application constraints, and can improve the query performance of the genomics
benchmark, which is amenable to black-box only strategies.

Alongside these promising results, we find that the amount that normal workflow
execution slows down is strongly correlated with the amount of lineage that is generated, and
can easily slow the execution by 2×. Further research is needed to understand mechanisms to
aggressively constrain the runtime overhead without reverting to a global black box strategy.

In conclusion, we believe SubZero is a valuable initial step to make interactively querying
fine-grained lineage a reality for data-intensive scientific applications.

67

4 Explaining Visualization Outliers

The preceeding chapter describes a mechanism for users to provide outliers in the output of
a workflow (e.g., points in the scatterplot output of a visualization workflow) and track their
lineage to the input records that generated those outliers. If the visualization is composed of
operators that process and output single records, then it is feasible to return the lineage as
a table of records. However, most visualizations will aggregate input datasets and render
statistical summaries of the data that can be easily visualized. In these cases, each outlier’s
value can easily depend on thousands or millions of input records. At this scale, naively
returning all of the input records is uninformative and techniques to summarize and reduce
the lineage are needed.

This chapter describes Scorpion, a hypothesis generation tool that helps explain outliers
in the results of SQL aggregation queries. It identifies and summarizes subsets of the input
data that are most correlated with the values of user-specified outliers. These summaries
can serve as an initial set of explanations for these outliers.

4.1 I NTRODUCT ION
Data exploration commonly involves exploratory analysis, where users try to understand
trends and general patterns by fitting models or aggregating data, and then visualizing the
results. The resulting visualizations will often reveal outliers – aggregate values, or subgroups
of points that behave differently than user expectations. For example, a sales trend may rise
faster than expected, or the number of system errors spikes during an hour of the day.

When confronted with these outliers, users will naturally want to understand if there
are systematic sources of errors, such as a malformed configuration file causing system
crashes, present in the data that are responsible for these anomalous values. This form of
analysis, which we call why-analysis, seeks to uncover these systematic errors by describing
the common properties of the input data points or records that caused the outlier outputs.
Although a multitude of tools are effective at highlighting and detecting outliers, none

69

provide why-analysis facilities to explain a given set of outputs are outliers.

Region 1!

Region 2!

Figure 4-1: Mean and standard deviation of temperature readings from Intel sensor dataset.

For example, Figure 4-1 shows a visualization of data from the Intel Sensor Data Set1.
Here, each point represents an aggregate (either mean or standard deviation) of data over an
hour from 61 sensor motes. Observe that the standard deviation fluctuates heavily (Region 1)
and that the temperature stops oscillating (Region 2). Our goal is to describe the properties
of the data that generated these highlighted outputs that “explain” why they are outliers.
Specifically, we want to find a boolean predicate that when applied to the input data set
(before the aggregation is computed), will cause these outliers to look normal, while having
minimal effect on the points that the user indicates are normal.

In this case, it turns out that Region 1 is due to sensors near windows that heat up
under the sun around noon, and the Region 2 is by another sensor running out of energy
(indicated by low voltage) that starts producing erroneous readings. However, these facts
are not obvious from the visualization and require manual inspection of the attributes of the
readings that contribute to the outliers to determine what is going on. We need tools that
can automate analyses to determine e.g., that an outlier value is correlated to the location
or voltage of the sensors that contributed to it.

1http://db.csail.mit.edu/labdata/labdata.html

70

http://db.csail.mit.edu/labdata/labdata.html

4.1.1 PROBLEM OVERV I EW
This problem is fundamentally challenging because a given outlier aggregate may depend
on an arbitrary number and combination of input data tuples. Identifying them requires
solving the following sub-problems.

Backwards provenance
We need to work backwards from each aggregate point in the outlier set to the input tuples
used to compute it (its lineage). In this work we assume that input and output data sets
are relations, and that outputs are generated by SQL group-by queries (possibly involving
user-defined aggregates) over the input. In general, every output data point may depend on
an arbitrary subset of the inputs, and require specialized lineage tracking systems such as
SubZero (Chapter 3).

Responsible subset
For each outlier aggregate point, we need a way to determine which subset of its input
tuples most caused the value to be an outlier. This problem, in particular, is difficult because
the naive approach involves iterating over all possible subsets of the input tuples used to
compute an outlier aggregate value.

Predicate generation
Ultimately, we want to construct a conjunctive predicate over the input attributes that filter
out the points in the responsible subset without removing a large number of other, incidental
data points. Thus, the responsible subset must be composed in conjunction with creating the
predicates. However, the predicate space is too large to search naively – it is exponential in
the dimensionality of the dataset, and in the cardinality of discrete attributes in the dataset.

4.1.2 CONTR IBUT IONS AND CHAPTER ROADMAP
This chapter presents Scorpion, a system we have built to solve the above problems. Scorpion
uses sensitivity analysis [95] to identify a systematic group of input points that most influence
the outlier aggregate outputs and generates a predicate that matches the points in the
groups. Scorpion’s problem formulation and system is designed to work with arbitrary
user-defined aggregation functions, albeit slowly for black-box functions. We additionally
describe properties shared by many common aggregate functions that enable more efficient
algorithms extended from classical regression tree and subspace clustering algorithms.

71

In Section 4.2, we describe several real applications where the why-analysis problem
manifests, such as outlier explanation, cost analysis, fault-analysis, and managing lineage
query results.

In order to approach the problem of finding the most influential predicate, we need a way
to compare the influences of different candidates. Section 4.4 introduces a scoring function
that induces a partial ordering over the predicate space and captures the goals described in
Section 4.2’s use cases.

Section 4.6 describes the design of a general system that searches for influential predicates
and a naive algorithm that supports arbitrary aggregation functions. The naive solution
iterates through, and computes the score, for all possible predicates. However, the number
of possible predicates increases exponentially with the dimensionality of the dataset, and
this quickly becomes infeasible for even small datasets.

In response, Sections 4.7-4.10 explore several common aggregation properties (similar
to distributive and algebraic OLAP aggregation properties) that enable more efficient
algorithms, and develop several such algorithms.

Sections 4.11-4.13 present our experimental setup and results on synthetic and real-world
problems. We find that our algorithms are of comparable quality to a naive exhaustive
algorithm while taking orders of magnitude less time to run.

4.2 MOT IVAT ION AND USE CASES
Scorpion is designed to augment data exploration tools with explanatory facilities that find
attributes of an input data set correlated with parts of the dataset causing user-perceived
outliers. In this section, we first set up the running example used throughout the chapter,
then describe several motivating use cases.

4.2.1 SENSOR DATA
Our running example is based on the Intel sensor deployment application described in the
Introduction. Consider a data analyst that is exploring a sensor dataset shown in Table 4-2.
Each tuple corresponds to a sensor reading, and includes the timestamp, and the values
of several sensors. The following query groups the readings by the hour and computes the
mean temperature. The left-side columns in Table 4-3 lists the query results.

72

Tuple id Time SensorID Voltage Humidity Temp.
T1 11AM 1 2.74 0.4 34
T2 11AM 2 2.71 0.5 35
T3 11AM 3 2.69 0.4 35
T4 12PM 1 2.71 0.3 35
T5 12PM 2 2.65 0.5 50
T6 12PM 3 2.30 0.4 100
T7 1PM 1 2.71 0.3 35
T8 1PM 2 2.70 0.5 35
T9 1PM 3 2.31 0.5 80

Table 4-2: Example tuples from sensors table

Result id Time AVG(temp) Label v
α1 11AM 34.6 Hold-out -
α2 12PM 61.6 Outlier < −1 >

α3 1PM 50.0 Outlier < −1 >

Table 4-3: Query results (left) and user annotations (right)

SELECT avg(temp), time (Q1)

FROM sensors GROUP BY time

The analyst thinks that the average temperature at 12PM and 1PM are unexpectedly
high and wants to understand why. There are a number of she may want to understand
these anomalies:

1. Describe the sensors readings that we can blame for “causing” the anomalies.
2. Describe the readings that most “caused” the anomalies.
3. Why are these sensors reporting high temperature?
4. This problem didn’t happen yesterday. How did the sensor readings change?

In each of the questions, the analyst is interested in properties of the readings (e.g.,
sensor id) that most influenced the outlier results. Some of the questions (1 and 2) involve
the degree of influence, while others involve comparisons between outlier results and normal
results (4). Section 4.4 formalizes these notions.

73

4.2.2 MED ICAL COST ANALYS I S
We are currently working with a major hospital (details anonymized) to help analyze
opportunities for cost savings. They observed that amongst a population of cancer patients,
the top 15% of patients by cost represented more than 50% of the total dollars spent.
Surprisingly these patients were not significantly sicker, and did not have significantly better
or worse outcomes than the median-cost patient. Their dataset consisted of a table with
one row per patient visit, and 45 columns that describe patient demographics, diagnoses, a
break-down of the costs, and other attributes describing the visit. They manually picked
and analyzed a handful of dimensions (e.g., type of treatment, type of service) and isolated
the source of cost overruns to a large number of additional chemotherapy and radiation
treatments given to the most expensive patients. They later found that a small number
of doctors were over-prescribing these procedures, which were presumably not necessary
because the outcomes didn’t improve.

Note that simply finding individually expensive treatments would be insufficient because
those treatments may not be related to each other. The hospital is interested in descriptions
of high cost areas that can be targeted for cost-cutting and predicates are a form of such
descriptions.

4.2.3 FAULT ANALYS I S
Fault analysis is closely related to the previous example. A telecom provider (identify
anonymized) we are working with tracks the number of daily fault-related jobs (e.g., a tree
branch disables a telephone line) across their network. Analysts view the total number
of jobs per day or week and investigate unexpected spikes or upward trends in the total
number of faults. They would like to understand the common properties causing the faults
to understand which faults to prioritize so so that the number per day is relatively stable.

The dataset contains a table with one row per job network, and columns that describe the
type of job, the subregion in the network, and a number of other network related information.

4.2.4 ELECT ION CAMPA IGN EXPENSES
In our experiments, we use a campaign expenses dataset 2 that contains all campaign
expenses between January 2011 and July 2012 during the 2012 US Presidential Election.
In an election that spent an unprecedented $6 billion, many people are interested in where
the money was spent. While technically capable users are able to programmatically analyze

2http://www.fec.gov/disclosurep/PDownload.do

74

http://www.fec.gov/disclosurep/PDownload.do

Notation Description
D The input relational table with attributes attr1, · · · , attrk

Agb, Aagg Set of attributes referenced in GROUPBY and aggregation clause
pi ≺D pj Result set of pi is a subset of pj when applied to D

α The set of aggregate result tuples, αi’s
gαi Tuples in D used to compute αi e.g., have same GROUPBY key
O, H Subset of α in outlier and hold-out set, respectively
vαi Error description for result αi

Table 4-4: Notations used

the data, end-users are limited to interacting with pre-made visualizations – a consumer
role – despite being able to ask valuable domain-specific questions about expense anomalies,
simply due to their lack of technical expertise. Scorpion is a step towards bridging this
gap by automating common analysis procedures and allowing end-users to perform analyst
operations.

4.2.5 EXTEND ING PROVENANCE FUNCT IONAL I TY
A key provenance use case is to trace an anomalous result backward through a workflow to
the inputs that directly affected that result. A user may want to perform this action when
she sees an anomalous output value. Unfortunately, when tracing the inputs of an aggregate
result, the existing provenance system will flag a significant portion of the dataset as the
provenance [33]. Although this is technically correct, the results are not precise. Scorpion
can reduce the provenance of aggregate operators to a small set of influential inputs that is
easier for an analyst to digest.

4.3 PROBLEM SETUP
This section introduces notations that will be used in the rest of the chapter, summarized in
Table 4-4.

Consider a single relation D with attributes A = attr1, .., attrk. Let Q be a non-nested
group-by SQL query grouped by attributes Agb ⊂ A, with a single aggregate function,
agg()̇, that computes a result using aggregate attributes Aagg ⊂ A from each tuple, where
Aagg ∩Agb = ∅. Finally, let Arest = A−Agb −Aagg be the attributes not involved with the
aggregate function nor the group by that are used to construct the explanations.

For example, Q1 contains a single group-by attribute Agb = {time}, and an ag-
gregate attribute Aagg = {temp}. The user is interested in combinations of Arest =

75

{SensorID, V oltage} values that are responsible for the anomalous average temperatures.
Scorpion outputs the predicate that most influences a set of output results. A predicate p

is a conjunction of range clauses over the continuous attributes and set containment clauses
over the discrete attributes, where each attribute is present in at most one clause. ¬p is the
negation of p, and PA is the space of all possible predicates over the attributes in A. Let
p(D) = σpD ⊆ D be the set of tuples in D that satisfy p. A predicate pi is contained in pj

with respect to a dataset D if the tuples in D that satisfy pi are a subset of those satisfying
pj :

pi ≺D pj ↔ pi(D) ⊂ pj(D)

Let the query generate n aggregate result tuples α = {α1, .., αn}, and the lineage of a
result αi be denoted li ⊆ D 3. The output attribute αi.res = agg(πAagg li) is the result of
the aggregate function computed over the projected attributes, Aagg, of the tuples in li.

Let O = {o1, .., ons |oi ∈ α} be a subset of the results that the user flags as outliers,
and H = {h1, · · · , hnh

|hi ∈ α} be a hold-out set of the results that the user finds normal.
O and H are typically specified through a visualization interface, and H ∩ O = ∅. Let
gX = ∪x∈X gx|X ⊆ α be shorthand for the lineage of a subset of the results, X . For example,
gO denotes the lineage of the outliers.

The user can also specify how the outlier result looks wrong by specifying. For a result
o, she can specify an error description vo ∈ {high, low, wrong, eqi} for when o is too high
and its value should be decreased as much as possible (high), too low and its value should
be increased(low), simply wrong and its value should change in any direction (wrong), or
should be equal to i (eqi). Let V = {voi |oi ∈ O}, be the set of error descriptions of all of the
outlier results.

4.4 FORMAL IZ ING INFLUENCE
Scorpion seeks to find a predicate over an input dataset that most influences a user selected
set of query outputs. In order to reason about this problem, we must define a partial ordering
of the predicate space so that we can distinguish preferable predicates from non-preferable
ones.

This section introduces the influence scoring function infagg(•) that defines such a partial
ordering. We will build up its argument list starting from the most basic definition that
handles a single outlier result o whose value is too high. We then increase the function’s

3The lineage semantics are the same as those in Panda [56] e.g., the subset of input tuples that satisfy the
query’s selection clauses and whose Agb values are equal to that of αi.

76

complexity by adding support for: an error type vo; a hold-out result h; parameters that
control the trade-off between “fixing” the outlier, the result predicate’ cardinality, and the
amount the hold-out is perturbed. The final version handles multiple outlier and hold-out
results.

4.4.1 BAS IC DEF IN I T ION
Our notion of influence is derived from sensitivity analysis [94], which computes the sensitivity
of a model to its inputs. Given a function y = f(x1, · · · , xn), the influence of xi is defined
by the amount the output changes given a change in the xi (the partial derivative) ∆y

∆xi
.

In our context, the model is an aggregation function agg() that takes a set of tuples such
as lo as input, and outputs a result o. A predicate p’s influence on o depends the on the
difference between the original result o.res and the updated output after deleting p(lo) from
lo. Note the analogy to ∆y in the partial derivative4.

∆o = ∆agg(o, p) = agg(lo)− agg(¬p(lo))

As such, the trivial solution p = True would maximize this score for aggregation functions
such as COUNT . Thus we add a regularization term ∆lo = |p(lo)| that represents the change
in the aggregation function input lo, and redefine influence as the ratio between ∆o and
∆lo. 5.

infagg(o, p) = ∆o

∆lo
= ∆agg(o, p)

|p(lo)|

For example, suppose the individual influences of each tuple in lα2 = {T4, T5, T6}, from
Tables 4-2 and 4-3. Based on the above definition, removing T4 from the input group increases
the output by 13.39, thus T4 have an influence of infAV G(α2, {T 4}) = 61.6−75

1 = −13.39. In
contrast, T6 has an influence of 19.2. Given this definition, T6 is the most influential tuple,
which makes sense, because T6.temp increases the average the most, so removing it would
most reduce the output.

The reason Scorpion defines influence in the context of predicates rather than individual
or sets of tuples is because individual tuples only exist within the lineage of a single result
tuple, whereas predicates are applicable to the lineage of multiple results. We now augment
inf with additional arguments to support other user inputs.

4Alternative formulations, e.g., perturbing input tuple values rather than deleting inputs tuples, are also
possible but not explored here.

5This definition closely resembles the discrete derivative of agg().

77

4.4.2 ERROR DESCR I PT ION
The previous formulation does not take into account the error descriptions, i.e., whether the
outliers are too high or too low. For example, if the user thinks that the average temperature
was too low, then removing T6 would, contrary to the user’s desire, further decrease the
mean temperature. We support this by modifying the definition of ∆ to also depend on vo:

∆agg(o, p, vo) =

agg(lo)− agg(¬p(lo)) if vo = high

agg(¬p(lo))− agg(lo) if vo = low

|agg(lo)− agg(¬p(lo))| if vo = wrong

1− 1+|val−agg(¬p(lo))|
1+|val−agg(lo)| if vo = eqval

When vo = high, the ∆ function is identical to the previous definition. However if the user
believes that the outlier is too low or wrong, then simply negating or taking the absolute
value of ∆o is sufficient to capture that notion. If the user states that the output value
should be val (e.g., vo = eqval), then we compute the absolute euclidian distances between
val and the updated as well as original output values. The ratio of these two distances
represents how close the o’s new value to val as compared with the original. We use add-one
smoothing to deal with the case that o is already equal to val.

To complete our modification, we extend the influence function to propogate the error
description to the ∆ function:

infagg(o, p, vo) = ∆agg(o, p, vo)
|p(lo)|

4.4.3 C HYPERPARAMETER
If the user specifies that an outlier result is “too high”, how aggressively should Scorpion
attempt to reduce its value? For example, let us compare p1 = voltage < 2.5, which matches
{T6, T9}, and p2 = voltage ≤ 2.65, which matches {T5, T6, T9}. Both predicates describe
anomalous temperatures higher than 35o, however p1 matches the very high temperature
readings, while p2 matches all readings above 35o. Since both predicates seem plausible our
influence function should have a mechanism to let the user prefer p1 or p2.

To support this, we modify the influence functions to accept an extra c parameter, which
is used as the exponent of the denominator in the influence function:

78

infagg(o, p, vo, c) = ∆agg(o, p, vo)
|p(lo)|c

The exponent c ≥ 0 controls the trade-off between the importance of keeping the size of p(lo)
small and maximizing the desired change in the output. In effect, when a user specifies that
an outlier result is too high, c controls how aggressively Scorpion should reduce the result.
For example, when c = 0, Scorpion will reduce the aggregate result without regard to the
number of tuples that are used, producing predicates that select many tuples. Increasing c

places more emphasis on finding a smaller set of tuples that have more “bang for the buck”,
producing much more selective predicates.

As a concrete example, Figure 4-14 illustrates a simple 2D predicate space where each
point represents a tuple, the color represents A.agg and varies from grey (low), medium
(orange), to high (red). The user computes the average of all of the record values and believes
the result is too high. The rectangle is a predicate that contains the influential subset. As c

increases, the rectangle shrinks to focus on the highest value tuples at the expense of less
total influence on the aggregation result.

4.4.4 HOLD -OUT RESULT
As mentioned above, a hold-out result h is a result that p should not influence, so p should
be penalized if it influences the hold-out results in any way. Unfortunately, there may not
exist a predicate that selectively influences the outliers without modifying the hold-outs and
we will need a way to manage these competing goals. To this end, we extend the influence
function to manage this trade-off using a parameter λ:

infagg(o, h, p, vo, c) = λ× infagg(o, p, vo, c)− (1− λ)× |infagg(h, p, 0)| (4.1)

The absolute value of infagg(h, p) serves to penalize any perturbation of the hold-out result.
Note that our treatment of h could be uniformly supported by viewing h as a special

case of an outlier whose error description is eqh.res. However, we distinguish between outlier
and hold-out results both for clarity in the text, and so that different weights (λ) can be
explicitly applied to the outliers and hold-outs.

4.4.5 MULT I P LE RESULTS
The user will often select multiple outlier results O and hold-out results H. We extend the
influence function to multiple result by computing the average of the outlier results and

79

penalizing the maximum perturbation of the hold-out results:

infagg(O, H, p, V, c) = λ× avg
o∈O

infagg(o, p, vo, c)− (1− λ)×max
h∈H
|infagg(h, p, 0)|

We chose avg in order to balance the desire to influence a substantial subset of the outliers6

with the reality that there may not exist a single predicate that influences all outliers7 In
addition, average has attractive computational properties (e.g., it is smooth and can be
incrementally computed) that robust functions such as median do not support. That being
said, other functions such as median or quartile are perfectly valid.

We chose max in order to provide a hard cap on the amount that a predicate can
influence any hold-out result. Alternatively, we could use the top decile, which may provide
more robust support if the client unknowingly chooses a few unlucky hold-out values.

4.4.6 NOTAT IONAL SHORTHANDS
The rest of the chapter uses the following short-hands when the intent is clear from the
context.

inf(p) = infagg(O, H, p, V, c)

∆(p) = ∆agg(o, p)

Functions are also extended to interpret a single tuple as a single element set:

inf(t) = inf({t})

∆(t) = ∆({t})

4.4.7 I NF LUENT IA L PRED ICATES PROBLEM
We can now introduce the Influential Predicates (IP) Problem: Given a select-project-
group-by SQL query Q, and client inputs O, H, V , λ and c, find the predicate, p∗, from the

6max may degenerate towards influencing a single result.
7min cannot distingiush between predicates that do not influence all of the outliers.

80

set of all possible predicates, PArest , that has the maximum influence:

p∗ = arg max
p∈PArest

inf(p) (4.2)

Why is This ProblemHard?
Section 4.2 motivated why this problem is useful, but it is not immediately obvious why
this problem should be difficult. For example, if the user thinks the average temperature
is too high, why not simply return the readings with the highest temperature? We now
illustrate some reasons that make the IP problem difficult. The rest of this chapter will
explore efficient solutions to this problem.

Non-independence Scorpion needs to consider how combinations of input tuples affect the
outlier results, which depends on properties of the aggregate function. In the worst case,
Scorpion cannot predict how combinations of input tuples interact with each other, and
needs to evaluate all possible predicates (exponential in the number of and cardinalities of
attributes). Section 4.7.2 explores a class of aggregation functions where this restriction can
be relaxed.

Working with Predicates Scorpion provides the user with understandable explanations of
anomalies in the data by returning predicates rather than individual tuples. Thus, Scorpion
must find tuples within bounding boxes defined by predicates, rather than arbitrary com-
binations of tuples. In the example above, it may be tempting to find the top-k highest
temperature readings and construct a predicate from the minimum bounding box that
contains those readings. However, it is unclear how many of the top readings should be used
and what the right cut-off should be. In fact, the top readings may have no relation with
each other and the resulting predicate may be non-influential because it primarily contains
a number of normal or low temperature

Query-Dependent The influence of a predicate relies on statistics of the tuples in addition
to their individual influences, and the specific statistic depends on the particular aggregate
function. For example, AV G depends on both the values and density of tuples, while
COUNT only depends on the density.

Hold-outs In the presence of a hold-out set, simple hill-climbing algorithms may not work
because a predicate that influences the outliers may also influence the hold-out results. The

81

non-convexity of the influence function combined with the size of the problem space makes
the problem particularly challenging and necessitates strong assumptions and/or heuristics.

4.5 ASSUMPT IONS
Recall that our goal is to find subsets of an input dataset (in the form of a predicate) whose
removal appears to fix the values of result outliers. To evaluate different candidate solutions,
we defined a distance function between the original result values and the updated results
that describes the amount the outliers have been fixed. A necessary condition to evaluate
the distance function is the ability to unambiguously compare each original result value with
the updated value.

Unfortunately, this condition does not hold for arbitrary SQL functions. To simplify our
reasoning, we made three assumptions about the structure of the SQL query – the query is
a group-by aggregation, does not contain subqueries, and does not contain joins. The rest of
this section explains our rationale for each of these restrictions.

Group-by Assumption
The group-by restriction is necessary because it enables the aggregation operation that forms
the basis of our problem. Without an aggregation operator, each result is trivially dependent
on a single input record (in a single relation query). When the user specifies the outlier set,
it is analagous to labelling individual points in a supervised learning problem and we can use
a standard rule-based learning algorithm such as a decision tree [91] to describe the outliers.

Subquery Assumption
We disallow subqueries because it allows queries where the distance function cannot be
unambiguously evaluated. To see why this is valuable, consider the following nested query
that Scorpion does not handle:

SELECT sumb, sum(a) as suma (Q2)

FROM (

SELECT a, sum(b) as sumb

FROM Texample

GROUP BY a) as Tinterm

GROUP BY sumb

82

id a b c
0 0 1 1
1 0 2 0
2 1 3 0
3 1 0 0
4 2 2 1
5 2 1 0
(a) Texample

id sumb suma

r0 3 3
(b) Result of Q2(Texample)

id sumb suma

r′
0 1 2

r′
1 2 0

r′
2 3 1

(c) Result of Q2(σc̸=1Texample)

Figure 4-5: Tables in example problem to show that IP problem is ill-defined under Q2

The subquery in Q2 partitions the data and produces three tuples {(0, 3), (1, 3), (2, 3)}. The
outer query then groups the data on the second attribute to compute the final results in
Table ??. In contrast, if the input table is filtered as σc̸=1Texample, then the subquery will
produce three intermediate tuples {(0, 2), (1, 3), (2, 1)}, and the outer query will produce the
results in Table 4-5c. Since the updated query generates more results whose lineage overlaps
with r0, it is ambiguous which updated result should be used to compare against r0. This
restriction help us sidestep this ambiguity.

Join Assumption
Our restriction on joins is for both convenience and efficiency. Efficient procedures to
“refresh” output results given changes in the input dataset have been well studied by Ikeda
et. al [54, 55]. Thus, Scorpion technically supports arbitrary join queries using its naive
algorithm and we do not consider joins to keep the text simple.

A second concern is that it makes designing efficient search procedures difficult because
an input tuple may both contribute several times to a single result, and may contribute
to multiple results. The latter suggests that algorithms that treat each loi independently
may not be safe because we need to track tuples whose contributions span multiple oi’s. For
this reason, we make the simplifying assumption and deal with joins as a future research
direction.

4.6 BAS IC ARCH ITECTURE
This section outlines the Scorpion system architecture we have developed to solve the
problem of finding influential predicates defined in the previous section and describes naive
implementations of the main system components. These implementations do not assume

83

anything about the aggregates so can be used on arbitrary user defined aggregates to find
the most influential predicate. We then explain why these implementations are inefficient.

4.6.1 SCORP ION ARCH ITECTURE

Partitioner! Merger!

Scorer!

DT! MC!

Naive!

Frontier!

Naive!

Lineage! Top-K!

Explana'ons*Outliers*&**
Hold4outs*

Input !
groups! Predicates!

Scorpion!

Figure 4-6: Scorpion architecture

Scorpion is implemented as part of an end-to-end data exploration tool (Figure 4-6).
Users can select databases and execute SQL aggregation queries whose results are visualized
as charts (Figure 4-1 shows a screenshot). Users can select arbitrary results, label them as
outliers or hold-outs, specify attributes that should be ignored during the predicate search,
and send the query to the Scorpion backend. Users can click through the result explanations
and plot the updated output with the outlier inputs removed from the SQL query.

Scorpion first uses the Lineage component to compute the lineage of the labeled results.
In this work, the queries are group-by queries over a single table, so computing the lineage is
straightforward. More complex relationships can be established using relational provenance
techniques [33] or a full-fledged lineage system such as SubZero.

The lineage, along with the original inputs, are passed to the Partitioner, which chooses
the appropriate partitioning algorithm based on the properties of the aggregate. The
algorithm generates a ranked list of predicates, where each predicate is tagged with a score
representing its estimated influence. For example, consider the 2D dataset illustrated in
Figure 4-7a, where each point represents an input tuple and a darker color means higher
influence. Figure 4-7b illustrates a possible partitioning of the dataset, where each partition is
a predicate. The partitioning algorithms often over-partition the dataset (i.e., each predicate
contains a subset of the optimal predicate) so Scorpion executes a merging phase (Merger),
which greedily merges similar predicates as long as it increases the influence (Figure 4-7c).

The Partitioner and Merger send candidate predicates to the Scorer, which computes
the influence as defined in the previous section. Computing the ∆ values dominates the cost

84

(a) Input dataset (b) Output of Partitioner. (c) Output of Merger

Figure 4-7: Each point represents a tuple. Red color means higher influence.

of this component because it needs to remove the tuples that match the predicate from each
result’s lineage, then rerun the aggregate on the updated lineage. This cost can be very high
if a result is computed from a large set of input tuples, or if the aggregation function makes
multiple passes over the data. Section 4.7.1 describes a class of aggregation functions that
can reduce these costs.

Finally, the top ranking predicate is returned to the visualization and shown to the user.
We now present basic implementations of the partitioning and merging components.

4.6.2 NA IVE PART I T IONER (naive)
For an arbitrary aggregate function without nice properties, it is difficult to improve beyond
an exhaustive algorithm that enumerates and evaluates all possible predicates. This is
because the influence of a given tuple may depend on the other tuples in the outlier set,
so a simple greedy algorithm will not work. The NAIVE algorithm first defines all distinct
single-attribute clauses, then enumerates all conjunctions of up to one clause from each
attribute. The clauses over a discrete attribute, Ai, are of the form, “Ai in (· · ·)” where
the · · · is replaced with all possible combinations of the attribute’s distinct values. Clauses
over continuous attributes are constructed by splitting the attribute’s domain into a fixed
number of equi-sized ranges, and enumerating all combinations of consecutive ranges. NAIVE
computes the influence of each predicate by sending it to the Scorer, and returns the most
influential predicate.

This algorithm is inefficient because the number of single-attribute clauses increases
exponentially (quadratically) as the cardinality of the discrete (continuous) attribute increases.
Additionally, the space of possible conjunctions is exponential with the number of attributes.
The combination of the two issues makes the problem untenable for even small datasets.
While the user can bound this search by specifying a maximum number of clauses allowed
in a predicate, enumerating all of the predicates is still prohibitive.

85

4.6.3 BAS IC MERGER
The Merger takes as input a list of predicates ranked by an internal score, iteratively merges
subsets of the predicates, and returns the resulting list. Two predicates are merged by
computing the minimum bounding box of the continuous attributes and the union of the
values for each discrete attribute. The basic implementation repeatedly expands the existing
predicates in decreasing order of their scores. Each predicate is expanded by greedily merging
it with adjacent predicates until the resulting influence does not increase.

This implementation suffers from multiple performance-related issues if the aggregate
is treated as a black-box. Each iteration calls the Scorer on the merged result of every
pair of adjacent predicates, but may only successfully merge a single pair. In addition, it
is susceptible to the curse of dimensionality, because the number of neighbors increases
exponentially with the number of attributes in the dataset. Section 4.9 explores optimizations
that address these issues.

The next section will describe several aggregate operator properties that enable more
efficient algorithm implementations.

4.7 QUERY AND AGGREGAT ION PROPERT I E S
To compute results in a managable time, algorithms need to efficiently estimate a predicate’s
influence, and prune the space of predicates. These types of optimizations depend on making
stronger assumptions about the aggregation function. This subsection describes several
properties that, when satisfied by an aggregation function, enables more efficient search
algorithms. Developers only need to specify these properties for their aggregation functions
once, and they are transparent to the end-user.

4.7.1 I NCREMENTALLY REMOVABLE
The Scorer is extensively called from all of our algorithms, so reducing its cost is imperative.
Its most expensive operation is computing the ∆ value by recomputing the aggregrate
function on the filtered input dataset. If the candidate predicate p does not match many
tuples, then |D| ≈ |¬p(D)| and the cost is nearly equivalent to re-running the query on the
entire dataset. It would be desireable to incrementally compute the aggregate result by only
examining the tuples that match p.

86

Example
As a concrete example, consider SUM over the values D = {1, 2, 3, 4, 5} and the predicate
p = (value ≥ 4). To compute the updated result, we would execute:

SUM(¬p(D)) = SUM({1, 2, 3}) = 6

Alternatively, we know that the updated value can be incrementally computed:

SUM(¬p(D)) =

SUM(D − {4, 5}) =

SUM(D)− SUM({4, 5}) =

SUM(D)− 9 = 6

Since the user’s original query has already computed SUM(D), we only need to compute
SUM(p(D)). We call this ability to incrementally compute agg(¬p(D)) as the incrementally
removable property.

Definition
In general, a computation is incrementally removable if the updated result of removing a
subset, s, from the inputs, D, can be computed by only reading s. It also turns out that
computing influence of an aggregate is incrementally removable as long as the aggregate
itself is incrementally removable.

Formally, an aggregate function, agg, is incrementally removable if it can be decomposed
into functions state, update, remove and recover, such that:

state(D)→ mD

update(mS1 , · · · , mSn)→ m∪i∈[1,n]Si

remove(mD, mS1)→ mD−S1

agg(D) = recover(mD)

Where D is the original dataset and S1 · · ·Sn are non-overlapping subsets of D to
remove. state computes a constant sized summary tuple m that summarizes the aggregation
operation, update combines n summary tuples into one, remove computes the summary

87

tuple of removing S1 from D, and recover recomputes the aggregate result from the summary
tuple.

The Scorer uses this property to compute and cache state(D), and re-used the cached
result to evaluate subsequent ∆ values. A predicate’s influence is computed by removing the
predicate’s tuple from mD, and calling recover on the result. Section 4.9 describes a case
where the Merger can use summary tuples to approximate influence scores without calling
the Scorer at all.

Application
This definition is very related to the concept of distributive and algebraic functions in
OLAP cubes [42]. These are functions where a sub-aggregate can be stored as a constant-
sized summary, and the summaries can be composed to compute the complete aggregate.
Whereas OLAP cubes are use this property to compose larger aggregates from smaller ones,
incrementally removable functions want to remove sub-aggregates from a larger aggergates.

Despite the similarities, not all distributive or algebraic are incrementally removable.
For example, it is not in general possible to re-compute MIN or MAX after removing an
arbitrary subset of inputs without knowledge of the full dataset. Similarly, robust statistics
such as MEDIAN and MODE are not incrementally-removable. In general, arithmetic
expressions derived from COUNT and SUM such as AV G, STDDEV , V ARIANCE and
LINEAR_CORRELATION are incrementally removable.

A developer implements the procedures state, update, remove and recover to make an
aggregation function incrementally removable. For example, AV G is augmented as:

AV G.state(D) = (SUM(D), |D|)

AV G.update(m1, · · · , mn) = (∑i∈[1,n] mi[0], ∑
i∈[i,n] mi[1])

AV G.remove(m1, m2) = (m1[0]−m2[0], m1[1]−m2[0])

AV G.recover(m) = m[0]/m[1]

4.7.2 I NDEPENDENT
The IP problem is non-trivial because combinations of input tuples can potentially influence a
user-defined aggregate’s result in arbitrary ways. The independence property allows Scorpion
to assume that the input tuples influence the aggregate result independently. For a function
agg to be independent, it must satisfy the two requirements described below.

88

Definition

Let t1 ≤ · · · ≤ tn such that ∀i∈[1,n−1]infagg(o, ti) ≤ infagg(o, ti+1) be an ordering of tuples
the lineage lo by their influence on the result o. Let T be a set of tuples, then agg must first
satisfy the following:

ta < tb → infagg(T ∪ {ta}) < infagg(T ∪ {tb}) (R1)

This requirement states that the influence of a set of tuples strictly depends on the
influences of the individual tuples without regard to the tuples in T (they do not interact
with ta or tb). For example, ta = 100 increases the result of AV G more than tb = 50,
independent of the existing average value.

In addition, agg must satisify a second condition. Let T1 and T2 be two subsets of the
input dataset:

avg t∈T1 infagg(t)
avg t∈T2 infagg(t) ∝

infagg(T1)
infagg(T2) (R2)

This states that the relative differences in the influence of two sets of tuples T1 and T2 is
proportional to the average influences of the individual tuples in each set.

These requirements point towards a greedy strategy to find the most influential set of
tuples for independent aggregates. Assume that the user provided a single suspicious result
and no hold-outs. The algorithm first sorts the tuples by influence and then incrementally
adds the most influential tuple to the candidiate set until the influence of the set does not
increase further. At this point we can construct a predicate using a standard rule-learning
algorithm [91]. This algorithm is guaranteed to find the optimal tuple set, though not
necessarily the optimal predicate.

While this sounds promising, the requirement is difficult to reason about because it
depends on internal details of the aggregation function and the parameters of our influence
definition. For example, factors such as the cardinality of the predicate and the presence of
hold-out results affect whether this proprety holds. For this reason, we modify the requirement
to depend on agg, rather than infagg. The developer specifies that an operator is independent
by setting the attribute, agg.independent = True.

89

Example
Nearly all non-robust statistical functions satisfy requirement R1, however only normalized
aggregates such as AVG, STDDEV, and higher moments of centrality satisfy R2. Functions
such as COUNT and SUM do not because their results depend on the cardinality of the
dataset. Take the SUM function for example:

avg
t∈{2,2}

∆SUM (t) < avg
t∈{3}

∆SUM (t)

≠⇒

∆SUM ({2, 2}) < ∆SUM ({3})

Although each value in {2, 2} has a smaller ∆ than each value in {3}, the former set, in
aggregate, has a larger ∆agg value because its total SUM is 4 > SUM({3}).

Section 4.8.1 describes the DT partitioning algorithm that is optimized for this property.

4.7.3 ANT I -MONOTON IC
The anti-monotonic property is used to prune the search space of predicates. In general, a
property is anti-monotone if, whenever a set of tuples s violates the property, so does any
subset of s. In our context, an operator is anti-monotonic if the amount that a predicate
p influences the aggregate result inf(o, p) is greater than or equal to the influence of any
predicate contained within p:

p′ ≺ p ⇐⇒ inf(p′) ≤ inf(p) (R3)

In other words, if p is non-influential, then none of the predicates contained in p can be
influential, and p can be pruned. For example, if D is a set of non-negative values, then
SUM(D) > SUM(s) ∀s⊆D. This is similar to the downward clouser property used in the
apriori algorithm [6] in association rule mining, and algorithms in subspace clustering [5].
Note that the property only holds if the data does not contain negative values.

Similar to the independence property, it is non-trivial to determine anti-monotonicity
at the influence level. Thus, developers only specify whether agg obeys this property by
defining a boolean function agg.check_antimonotone(D), that returns True if D satisfies
any required constraints, and False otherwise. For example:

90

COUNT.check_antimonotone(D) = True

MAX.check_antimonotone(D) = True

SUM.check_antimonotone(D) = ∀d∈D d ≥ 0

Section 4.8.2 describes the MC partitioning algorithm that is optimized for this property.

4.8 PART I T ION ING ALGOR I THMS
While the general IP problem is exponential, the properties presented in the previous section
enable several more efficient partitioning and merging algorithms. In this section, we describe
a top-down partitioning algorithm that takes advantage of operator independence and a
bottom-up algorithm for independent, anti-monotonic aggregates.

A benefit of these partitioning algorithms is that they largely execute independently of
the c.

4.8.1 DEC I S ION TREE (DT) PART I T IONER

DT is a top-down partitioning algorithm for independent aggregates. It is based on the
intuition that the ∆ will not significantly change when tuples with similar influence are
combined together. Correspondingly, DT generates predicates where the lineage of a result
αi that satisfy a predicate have similar influence. The Merger then greedily merges adjacent
predicates with similar influence to produce the final predicates.

DT recursively splits the attribute space to create a set of predicates. Because the outlier
groups are different than hold-out groups, we partition these groups separately, resulting
in a set of outlier predicates and hold-out predicates. These are combined into a set of
predicates that differentiates ones that only influence outlier results from those that also
influence hold-out results. We first describe the partitioning algorithm for a single input
group, then for a set of outlier input groups (or hold-out input groups), and finally how to
combine outlier and hold-out partitionings.

91

Single α Recursive Partitioning

The recursive partitioner takes a single lineage set, aggregate, and error description (for
outliers) as input, and returns a partitioning8 such that the variance of the influence of
individual tuples within a partition is less than a threshold. Our algorithm is based on
regression tree algorithms, so we first explain a typical regression tree algorithm before
describing our differences.

Regression trees [20] are the continuous counterpart to decision trees and used to predict
a continuous attribute rather than a categorical attribute. In the general formulation, the
tree begins with all data in a partition. The algorithm fits a constant or linear formula to
the tuples in the partition, and computes the formula’s error (typically standard error or
sum error). If the error metric or number of tuples in the partition are below their respective
thresholds, then the algorithm stops. Otherwise, the algorithm computes the best (attribute,
value) pair to split the partition so that the resulting child partitions will minimize the error
metric, and recursively calls the algorithm on the children.

Our approach re-uses the regression tree framework to minimize the distribution of
influence values within a given partition. In our formulation, we set tuple influence as the
target attribute, fit a constant formula, define error metric as the standard error, and only
consider attribute bisections rather than arbitrary split points.

Stopping Condition

Our key insight is that that partitions containing influential tuples should be more accurate
than non-influential partitions, thus the error metric threshold can be relaxed for partitions
that don’t contain any influential tuples. This way, large perturbations in non-influential
partitions will not trigger non-productive splitting.

The error threshold value is based on the maximum influence in a partition, infmax,
and the upper, infu, and lower, infl, bounds of the influence values in the dataset. The
threshold can be computed via any function that decreases from a maximum to a minimum
threshold value as infmax approaches infu. Scorpion computes the threshold as:

8Partitions and predicates are interchangeable, however the term partition is more natural when discussing
space partitioning algorithms such as those in this section.

92

threshold = ω ∗ (infu − infl)

ω = min(τmin + s ∗ (infu − infmax), τmax)

s = τmin − τmax

(1− p) ∗ infu − p ∗ infl

Where ω is the multiplicative error as depicted in Figure 4-8, s is the slope of the downward
curve, p = 0.5 is the inflection point when the threshold starts to decrease, and τmax and
τmin are the maximum and minimum threshold values. In our experiments, we set τmax and
τmin to 0.05 and 0.001, respectively.

�
!

infu!infl! (p)(infu-infl)!

�max!

�min!

infmax!

Figure 4-8: Threshold function curve as infmax varies

Sampling
The previous algorithm still needs to compute the influence on all of the input tuples. To
reduce this cost, we exploit the observation that the influential tuples should be clustered
together (since Scorpion searches for predicates), and sample the data in order to avoid
processing all non-influential tuples. The algorithm uses an additional parameter, ϵ, that
represents the maximum percentage of the dataset that contains outlier (thus influential)
tuples. The system initially estimates a sampling rate, samp_rate, such that a sample from
D of size samp_rate ∗ |D| will contain high influence tuples with high probability (≥ 95%):

sample_rate = min({sr|sr ∈ [0, 1] ∧ 1− (1− ϵ)sr∗|D| ≥ 0.95})

Scorpion initially uniformly samples the data, however after computing the influences
of the tuples in the sample, there is information about the distribution of influences. We
use this when splitting a partition to determine the sampling rate for the sub-partitions. In
particular, we stratify samples based on the total relative influences of the samples that fall

93

into each sub-partition. In this way, the algorithm pays more attention to higher influence
regions.

To illustrate, let D be partitioned by the predicate p into D1 = p(D) and D2 = ¬p(D),
and S ⊂ D be the sample with sampling rate samp_rate. We use the sample to estimate
D1’s (and similarly D2’s) total influence:

sum_infD1 =
∑

t∈p(S)
inf(t)

The sampling rates are computed as:

samp_rateD1 = sum_infD1

sum_infD1 + sum_infD2
∗ |S|
|D1|

samp_rateD2 = sum_infD2

sum_infD1 + sum_infD2
∗ |S|
|D2|

Multi-α Recursive Partitioning
When there are multiple lαi sets, DT needs to find a single partitioning across the lineage of
each αis. To do this, the algorithm separately evaluates a given partition on each lαi , and
merges the error metrics to make consistent termination and split decisions.

For example, DT makes a split decision by combining the error metrics computed
for each candidate attribute. For an attribute attr, we compute its combined error as
metricattr = max(metrici

attr|i ∈ [0, |R|]), where metrici
attr is the error metric of attribute a

in the instance of the algorithm for αi.

Synchronizing Outlier and Hold-out Partitioning
DT separately partitions outlier from hold-out input groups to avoid the complexity of
computing the combined influence. It is tempting to compute the union of the input groups
and execute the above recursive partitioner on the resulting set, however, it can result in
over-partitioning. For example, consider α2 and α3 from Table 4-3. The outlier temperature
readings (T6 and T9) are correlated with low voltage. If lα2 and lα3 are combined, then the
error metric of the predicate voltage < 2.4 would still have high variance, and be falsely
split further. In the worst case, the partitioner will create single-tuple partitions.

The result of the separate partitioning procedures are a separate set of partitions for the
outliers (partitionsO) and the hold-outs (partitionsH). The final step is to combine them
into a single partitioning, partitionsC . The goal is to distinguish partitions that influence

94

hold-out results from those that only influence outlier results. We do this by splitting
partitions in partitionsO along their intersections with partitions in partitionsH .

For example, partitionsH in Figure 4-9 contains a partition that overlaps with two of
the influential partitions in partitionsO. The splitting process distinguishes partitions that
influence hold-out results (contains a red ’X’) from those that only influence outlier results
(contains a green check mark).

(a) partitionsO (b) partitionsH

✖!✔!✔! ✔!

(c) partitionsC

Figure 4-9: Combined partitions of two simple outlier and hold-out partitionings

4.8.2 BOTTOM -UP (MC) PART I T IONER
The MC algorithm is a bottom-up approach for independent, anti-monotonic aggregates,
such as COUNT and SUM . It can be much more efficient than DT for these aggregates.
The idea is to first search for influential single-attribute predicates, then intersect them
to construct multi-attribute predicates. Our technique is similar to algorithms used for
subspace clustering [5], so we will first sketch a classic subspace clustering algorithm, and
then describe our modifications. The output is then sent to the Merger.

Subspace Clustering
The subspace clustering problem searches for all subspaces (hyper-rectangles) that are
denser than a user defined threshold. The original algorithm, CLIQUE [5], and subsequent
improvements, employs a bottom-up iterative approach that initially splits each continuous
attribute into fixed size units, and every discrete attribute by the number of distinct attribute
values. Each iteration computes the intersection of all units kept from the previous iteration
whose dimensionality differ by exactly one attribute. Thus, the dimensionality of the units
increase by one after each iteration. Non-dense units are pruned, and the remaining units
are kept for the next iteration. The algorithm continues until no dense units are left. Finally,
adjacent units with the same dimensionality are merged. The pruning step is possible because
density (i.e. COUNT) is anti-monotonic because non-dense regions cannot contain dense
sub-regions.

95

The intuition is to start with coarse-grained predicates (single dimensional), and improve
the influence by adding additional dimensions that refine the predicates.

Algorithm 1 Pseudocode for the MC partitioning algorithm.
1: function MC(O, H , V)
2: predicates← Null
3: best← Null
4: while |predicates| > 0 do
5: if predicates = Null then
6: predicates← initialize_predicates(O, H)
7: else
8: predicates← intersect(predicates)
9: best← arg maxp∈merged inf(p)

10: predicates← prune(predicates, O, V, best)
11: merged← Merger(predicates)
12: merged← {p|p ∈ merged ∧ inf(p) > inf(best)}
13: if merged.length = 0 then
14: break
15: predicates← {p|∃pm∈mergedp ≺D pm}
16: best← arg maxp∈merged inf(p)
17: return best
18:
19: function prune(predicates, O, V , best)
20: ret = {p ∈ predicates|inf(O,∅, p, V) < inf(best)}
21: ret = {p ∈ ret| arg maxt∗∈p(O) inf(t∗) < inf(best)}
22: return ret

MajorModifications
We have two major modifications to the subspace clustering algorithm. First, we merge
adjacent units after each iteration to find the most influential predicate. If the merged
predicate is not more influential than the optimal predicate so far, then the algorithm
terminates.

Second, we modify the pruning procedure to account for two ways in which the influence
metric is not anti-monotonic. The first case is when the user specifies a hold-out set. Consider
the problem with a single outlier result, o, and a single hold-out result, h (Figure 4-10). A
predicate, p, may be non-influential because it also influences a hold-out result (Figure 4-
10.a), or because it doesn’t influence the outlier result (Figure 4-10.b). In the former case,
there may exist a predicate, p′ ≺lo∪lh p that only influences the outlier results. Pruning p

would mistakenly also prune p′. In the latter case, p can be safely pruned. We distinguish

96

Outlier(Lineage(Hold0out(Lineage(

(a)(

(b)(

Figure 4-10: The predicates are not influential because they either (a) influence a hold-out
result or (b) doesn’t influence an outlier result.

these cases by pruning p based on its influence over only the outlier results, which is a
conservative estimate of p’s true influence.

The second case is because anti-monotonicity is defined for ∆(p), however influence is
proportional to ∆(p)

|p|c , which is not anti-monotonic if c > 0. For example, consider three tuples
with influences, {1, 50, 100} and the operator SUM . The set’s influence is (1+50+100)

3 = 50.3,
whereas the subset {50, 100} has a higher influence of 75. It turns out that the anti-
monotonicity property holds if, for a set of tuples T , the tuple with the maximum influence
is less than the influence of T :

inf(t∗) < inf(T) |t∗ = arg max
t∈T

inf(t)

Algorithm 22 lists the pseudocode for the MC algorithm. The first iteration of the
WHILE loop initializes predicates to the set of single attribute predicates and subsequent
iterations intersect all pairs in predicates (Lines 5-8). The best predicate so far, best, is
updated, and then used to prune predicates (Lines 9,10). The resulting predicates are
merged, and filtered for ones that are more influential than best (Lines 11-12). If none of the
merged predicates are more influential than best, then the algorithm terminates. Otherwise
predicates and best are updated, and the next iteration proceeds.

The pruning step first removes predicates whose influence, ignoring the hold-out sets,
is less than the influence of best. It then removes those that don’t contain a tuple whose
individual influence is greater than best’s influence.

97

4.9 MERGER OPT IM IZAT IONS
Section 4.6.3 describe a basic merging algorithm that scans the list of predicates and expands
each one by repeatedly merging it with its adjacent predicates. It results in a list of merged
predicates ordered by influence.

In this section, we propose several heuristic optimizations to the basic algorithm. In
addition, we propose a second merging algorithm that can search for good predicates over a
range of c hyperparameter values so that the merger is not limited to a single c value in
each run. This is valuable when the user wants to try multiple c values to see how the top
predicates change.

4.9.1 BAS IC OPT IM IZAT IONS
The main overheads in the basic merger are due to the cost of merging two predicates and
applying the predicate to compute its influence, the number of predicates to expand, and the
number of neighbors that are candidates for merging. This subsection presents optimizations
that target the former two overheads when the aggregation function is independent.

Approximate Scorer
The first optimization seeks to completely avoid calling the Scorer when the operator is also
incrementally removable (e.g., AV G, STDDEV). Instead, it uses state stored in existing
predicates to apprimate the influence of the merged result.

Although the incrementally removable property already avoids recomputing the aggregate
over the entire dataset, there is still the cost of evaluating the predicate on the input datasets.
Doing this for every pair of neigboring predicates will still be very slow.

Recall that DT generates partitions where the tuples in a partition have similar influence.
We modify DT to additionally record each partition’s cardinality, and the tuple whose
influence is closest to the mean influence of the partition. The Merger can use the aggregate’s
state, update, remove and recover functions to directly approximate the influence of a
partition from the cached tuple.

Concretely, let partition p have cardinality N and its cached tuple be t. Let mt = state(t)
and mD = state(D) be the states of {t} and the dataset, then:

inf(p) ≈ recover(remove(mD, update(mt, · · · , mt)))

where update combines N copies of mt. In other words, p’s influence can be approximated
by combining N copies of mt, removing them from mD, and calling recover.

98

P*#

P1#

P2#

P3#

Figure 4-11: Merging partitions p1 and p2

Now consider merging partitions p1 and p2 into p∗ as shown in Figure 4-11 and approxi-
mating its influence. This scenario is typically difficult because its not clear how the tuples
in p3 and p1 ∩ p2 affect p∗’s influence. Similar to replicating the cached tuple multiple times
to approximate a single partition, we estimate the number of cached tuples that p1, p2, and
p3 contribute.

We assume that tuples are distributed uniformly within the partitions. Let Vp and Np

be the volume and cardinality of partition p and let pij be a shorthand for pi ∩ pj . Then the
number of cached tuples from each partition np is computed as follows:

np1 = Np1 ×
Vp1 − 0.5Vp12

Vp∗

np2 = Np2 ×
Vp2 − 0.5Vp12

Vp∗

np3 = Np3 ×
Vp3∩p∗

Vp∗

The Merger approximates a partition’s influence from the input partitions by estimating
the number of cached-tuples that each input partition contributes. Thus, the cost only
depends on the number of intersecting partitions, rather than the size of the dataset.

We can prevent the approximation error for accumulating by periodically sending a
merged predicate to the Scorer to compute its true influence, cardinality, and representative
tuple.

Reducing Expandable Predicates
The second optimization reduces the number of predicates that need to be expanded by
only expanding the predicates whose influences are within the top quartile. This is based
on the intuition that the final predicate is most likely to influence predicates in the top

99

quartile, so it is inefficient to expand less influential predicates. This approach does not work
for non-independent functions such as SUM because a predicate containing non-influential
tuples may itself be influential. Section 4.7.2 illustrates an example.

4.9.2 S INGLE -PASS MERG ING ALGOR I THM
The previous algorithm finds the top predicates for an influence function that is parameterized
with a fixed c value. Since the c value trades off the absolute amount of influence with the
predicate’s cardinality, it is desirable to find the best predicates for many different c values –
ideally all values within a range. One possibility is to try different c values, however it is
unclear which values to try because the best c value depends on human judgement. Thus,
we might consider asking the user to manipulate c through an interface element and inspect
the results. However, our user studies showed that the parameter leads to user confusion and
is an ineffective design choice. In addition, each iteration requires running Scorpion again.

For these reasons, we have designed a single-pass merging algorithm to sweep through a
range of c values to find the best predicates for each c value. The partitioning algorithms
described in the previous section do not depend on c (with the exception of minor changes
to MC), thus the primary challenge is designing a new merging algorithm to support this
use case.

Preliminaries
The main insight is that a predicate p’s influence can be represented by a curve parameterized
by c. Recall that the influence function is computed (simplified to ignore λ and V) as:

infagg(O, H, p, c) = avg
o∈O

∆agg(o, p)
|p(lo)|c −max

h∈H
|∆agg(p)

1 | (4.3)

Given a specific predicate and input dataset, the terms ∆agg(o, p), |p(lo)|, and the maxh∈H

subexpression can be converted into constants ko
∆, ko

card, kH . This conversion allows us to
simplify the equation to only depend on c:

infp(c) = avg
o∈O

ko
∆

(ko
card)c

− kH (4.4)

Since ko
card is always positive, this function is monotonically decreasing (increasing)

when the ko
∆ values are positive (negative). Figure 4-12 illustrates the influence curves for

two example predicates whose ko
∆ values are positive. p2 has the highest influence when

c ∈ [0, 0.15], whereas p1 is optimal when c > 0.15. The grey dashed line depicts the frontier

100

0.0! 0.75!

3!

2!
in
f ag
g!

1!

0!

0.25! 0.50! 1.00!

c!

p1!

p2!

frontier!

Figure 4-12: Influence curves for predicates p1 and p2, and the frontier (grey dashed line).

of the two predicates, as computed by the maximum influence over the set of predicates P :

inffrontier(c, P) = max
p∈P

infp(c) (4.5)

We say that a predicate p1 dominates p2 at c if infp1(c) ≥ infp2(c). A predicate p is
called a frontier predicate of P if there exists a c such that p dominates the predicates in P :

∃c ∈ [cmin, cmax] ∀p′ ∈ P p(c) dominates p′(c)

We also define the frontier of a set of predicates P as the subset of P that are frontier
predicates:

frontier(P, cmin, cmax) = {p ∈ P | ∀c ∈ [cmin, cmax] ∧ inffrontier(c, P) = infp(c)} (4.6)

Thus the goal of the modified merging algorithm is to find the frontier predicates P

within the predicate space PArest that maximizes the integral of its frontier within a user
defined range of c values.

arg max
P ∈PArest

∫
c∈[cmin,cmax]

inffrontier(c, P)dc (4.7)

101

Algorithm
Algorithm 18 lists the pseudocode for a greedy algorithm that approximates the solution for
Equation 4.7. The algorithm tracks the current frontier predicates and iteratively merges
the existing frontier predicates with their neighbors (line 4) until the frontier reaches a fixed
point (line 6).

Algorithm 2 Pseudocode for single-pass merging algorithm.
1: function FrontierMerger(P, cmin, cmax)
2: while true do
3: Pf ← frontier(P, cmin, cmax)
4: P ′ ←

⋃
p∈frontier expand(p)

5: P ′
f ← frontier(P ′, cmin, cmax)

6: if |P ′
f − Pf | = 0 then

7: return Pf

8: P ← P ′

9:
10: function frontier(P, cmin, cmax)
11: ccur ← cmin

12: pcur ← arg maxp∈P infp(ccur)
13: frontier ← ∅
14: while ccur ≤ cmax do
15: frontier ← frontier ∪ {pcur}
16: nextroots← {(ci, p)|p ∈ P ∧ ci ∈ intersection(pcur, p) ∧ ci > ccur}
17: ccur, pcur ← arg min(ci,p)∈nextroots ci

18: return frontier

We compute frontier(P, cmin, cmax) by noting that a frontier predicate will continue to
dominate until its curve intersects with that of another predicate. For example, Figure 4-12
illustrates that P2 dominates P1 at c = 0, and continues to dominate until it intersects with
P1 at c = 0.15. With this intuition, we developed an algorithm to compute the frontier in a
single careful sweep of c ∈ [cmin, cmax] by logging all of the intersection points where the
dominating predicate changes. The algorithm initializes with the dominating predicate at
c = cmin (Lines 1-2). It repeatedly computes the intersection points (Line 14) between the
current frontier predicate and each predicate in P , and picks the predicate with the closest
intersection point (line 17) to replace the current frontier predicate.

Since there are no closed-form solutions to find the intersection points between the
influence curves, we resort to numerical methods. This is expensive if we need to compute
intersections between every pair of predicates. An alternative is to pre-compute each predi-
cate’s influence at N sample c values, and compute the dominating predicate at each sample.

102

As N →∞, the resulting frontier will converge with the solution in Algorithm 18. In practice,
we find that N ≈ 50 produces results that are comparable to that of the exact solution.

4.10 D IMENS IONAL I TY REDUCT ION
Reducing the number of attributes in Arest helps reduce the predicate space that Scorpion
needs to consider, and is an optimization that can be applied independent of the particular
partitioning and merging algorithm that is used.

One approach is to apply filter-based feature selection techniques [93] to the dataset. These
techniques identify non-informative features by computing correlation or mutual information
scores between pairs of attributes. For example, if we know that attributes day and timestamp
are strongly correlated, then we can treat them as the same logical attribute e.g., daytstamp. A
result predicate that contains the logical attribute, such as daytstamp < July/01/2014 1PM

can be expanded into day < July/01/2014 and tstamp < July/01/2014 1PM .

Attributes that are strongly correlated with Agb are also unlikely to be of interest, and
can be ignored. For example, if the query groups by timestamp, then predicates on epoch

will simply select the same records as lo and not provide any extra information.

In addition, the attributes could be ordered by importance, and Scorpion could preferen-
tially split and merge attributes based on importance. This often makes sense when external
information can help distinguish informative and actionable attributes (e.g., sensor) from
non-actionable attributes (e.g., debug-level) or non-informative ones (e.g., epoch).

Scorpion currently supports ignoring attributes and relies on the client to specify at-
tributes that can be ignored. We consider this decision as an orthogonal problem to the one
in this chapter.

4.11 EXPER IMENTAL SETUP
The goal of these experiments is to gain an understanding of how the different partitioning
and merging algorithms compare in terms of performance and answer quality. Furthermore,
we want to understand how the c parameter impacts the types of predicates that the
algorithms generate. We first use a synthetic dataset with varying dimensionality and task
difficulty to analyze the algorithms, then anecdotally comment on the result qualities on 4
and 12 dimensional real-world datasets.

103

4.11.1 DATASETS
This subsection describes each dataset and their schema, attributes, query workload, and
properties of the outlier tuples.

Synthetic Dataset (SYNTH)
The synthetic dataset is used to generate ground truth data to compare our various algorithms.
We use a simple group-by SQL query template and use SUM or AV G as the aggregation
function to match the MC and DT algorithms:

SELECT Ad, agg(Av) FROM synthetic GROUP BY Ad (Q3)

The data consists of a single group-by attribute Ad, one value attribute Av that is used
to compute the aggregate result, and n dimension attributes A1, · · · , An that are used to
generate the explanatory predicates. The value and dimension attributes have a domain of
[0, 100]. We generate 10 distinct Ad values (to create 10 groups), and each group contains
2,000 tuples randomly distributed in the n dimensions. The Av values are drawn from
one of three gaussian distributions, depending on if the tuple is a normal or outlier tuple,
and the type of outlier. Normal tuples are drawn from N (10, 10). To illustrate the effects
of the c parameter we generate high-valued outliers, drawn from N (µ, 10), and medium
valued outliers, drawn from N (µ+10

2 , 10). µ > 10 is a parameter to vary the difficulty of
distinguishing normal and outlier tuples. The problem is harder the closer µ is to 10. The
hold-out groups exclusively sample from the normal distribution, while the outlier groups
sample from all three distributions.

We generate the outlier groups by creating two random n dimensional hyper-cubes over
the n attributes where one is nested inside the other. The outer cube samples from the
median distribution and the inner cube samples from the high valued distribution. Each cube
contains perc% of the volume of its immediate enclosing cube. Since points are distributed
uniformly, each cube also contains perc% of the tuples in its enclosing cube. The tuples
outside of the outer cube are normal.

For example, Figure 4-13 illustrates an example 2D dataset and query results. The top
graph renders the aggregate results the that a user would see, and bottom shows input
tuples of one outlier result and one hold-out result. The right scatterplot visualizes the tuples
in an outlier group with µ = 90 and perc = 25. The outer cube (orange points) encloses
A1 ∈ [42, 92], A2 ∈ [37, 87] and the inner cube (red points) encloses A1 ∈ [52, 77], A2 ∈ [44, 69].

104

Su
m

(A
v)
!

Agb !

A1!

A2!

A1!
0! 50! 100! 0! 50! 100!

0!

50!

100!

Outlier(results(Hold-out(results(

10!

50!

80!

Av(

Figure 4-13: Visualization of outlier and hold-out results and tuples in their input groups
from a 2-D synthetic dataset. The colors represent normal tuples (light grey), medium valued
outliers (orange), and high valued outliers (red).

In the experiments, we flag the 5 outlier aggregate results, and use the other 5 as hold-
outs. We also vary the dimensionality from 2 to 4, and the difficulty between Easy (µ = 80)
and Hard (µ = 30), For example, SYNTH-2D-Easy describes a 2-dimensional dataset where
µ = 80.

Intel Dataset (INTEL)
The Intel dataset contains 2.3 million rows, and 6 attributes. Four of the attributes, sensorid,
humidity, light, and voltage are used to construct explanations. All of the attributes are
continuous, except for sensorid, which contains ids of the 61 sensors.

We use two queries for this experiment, both related to the impact of sensor failures on
the standard deviation of the temperature. The following is the general query template, and
contains an independent aggregate:

SELECT truncate(′hour′, time) as hour, STDDEV(temp) (Q4)

FROM readings

WHERE STARTDATE ≤ time ≤ ENDDATE GROUP BY hour

105

The first query occurs when a single sensor (sensorid = 15) starts dying and generating
temperatures above 100oc. The user selects 20 outliers and 13 hold-out results, and specifies
that the outliers are too high.

The second query is when a sensor starts to lose battery power, indicated by low voltage
readings, which causes above 100oc temperature readings. The user selects 138 outliers and
21 hold-out results, and indicates that the outliers are too high.

Campaign Dataset (EXPENSE)
The expenses dataset 9 contains all campaign expenses between January 2011 and July 2012
from the 2012 US Presidential Election. The dataset contains 116448 rows and 14 attributes
(e.g., recipient name, dollar amount, state, zip code, organization type), of which 12 are used
to create explanations. The attributes are nearly all discrete, and vary in cardinality from 2
to 18 thousand (recipient names). Two of the attributes contain 100 distinct values, and
another contains 2000.

The SQL query uses an independent, anti-monotonic aggregate and sums the total
expenses per day in the Obama campaign. It shows that although the typical spending is
around $5,000 per day, campaign spent up to $13 million per day on media-related purchases
(TV ads) in June.

SELECT sum(disb_amt) (Q5)

FROM expenses WHERE candidate = ′Obama′

GROUP BY date

We flag 7 outlier days where the expenditures are over $10M, and 27 hold-out results
from typical days.

4.11.2 METHODOLOGY
Our experiments compare Scorpion using the three partitioning algorithms along metrics of
precision, recall, F-score and runtime. We compute precision and recall of a predicate, p, by
comparing the set of tuples in p(gO) to a ground truth set. The F-score is defined as the
harmonic mean of the precision and recall:

F = 2× precision× recall

precision + recall

9http://www.fec.gov/disclosurep/PDownload.do

106

http://www.fec.gov/disclosurep/PDownload.do

The NAIVE algorithm described in Section 4.6.2 is clearly exponential and is unacceptably
slow for any non-trivial dataset. We modified the exhaustive algorithm to generate predicates
in order of increasing complexity, where complexity is terms of the number and size of values
in a discrete clause, and the number of clauses in the predicate. The modified algorithm
uses two outer loops that increases the maximum allowed complexity of the discrete clauses
and the maximum number of attributes in a predicate, respectively, and an inner loop that
iterates through all combinations of attributes and their clauses. When the algorithm has
executed for a user specified period of time, it terminates and returns the most influential
predicate generated so far. In our experiments, we ran the exhaustive algorithm for up to 40
minutes, and also logged the best predicate found so far every 10 seconds.

The current Scorpion prototype is implemented in Python 2.7 as part of an end-to-end
data exploration tool. Relations are encoded as tables in the Orange [34] machine learning
package, and predicates are evaluated as full table scans. Scorpion can be installed using the
following commands:

pip install scorpion # installs Scorpion

pip install dbwipes # installs visualization frontend

The experiments are run on a Macbook Pro (OS-X Lion, 8GB RAM). The influence
scoring function was configured with λ = 0.5. The Naive and MC partitioner algorithms
were configured to split each continuous attribute’s domain into 15 equi-sized ranges. The
DT algorithm was configured with taumin = 0.001, taumax = 0.05, and ϵ = 0.1%,

4.12 SYNTHET IC DATASET EXPER IMENTS
Our first set of experiments use the 2D synthetic datasets to highlight how the c parameter
impacts the quality of the optimal predicate. We execute the NAIVE algorithm until
completion and show how the predicates and accuracy statistics vary with different c values.
The second set of experiments compare the DT, MC and NAIVE algorithms by varying
the dimensionality of the dataset and the c parameter. The final experiment introduces a
caching based optimization for the DT algorithm and the Merger.

4.12.1 NA IVE ALGOR I THM
Figure 4-14 plots the optimal predicate that Naive finds for different c values on the SYNTH-
2D-Hard dataset. When c = 0, the predicate encloses all of the outer cube, at the expense
of including many normal points. When c = 0.05, the predicate contains most of the outer

107

(a) c = 0 (b) c = 0.05 (c) c = 0.1 (d) c = 0.2 (e) c = 0.5

Figure 4-14: Optimal NAIVE predicates for SYNTH-2D-Hard

SYNTH−2D−Easy SYNTH−2D−Hard

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

F
−

S
core

P
recision

R
ecall

0.0 0.2 0.4 0.0 0.2 0.4
C parameter

S
ta

tis
tic

Ground Truth ● Inner Outer

Figure 4-15: Accuracy statistics of NAIVE as c varies using two sets of ground truth data.

cube, but avoids regions that also contain normal points. Increasing c further reduces the
predicate and exclusively selects portions of the inner cube.

It is important to note that all of these predicates are correct and influence the outlier
results to a different degree because of the c parameter. This highlights the fact that a single
best predicate is ill-defined because the actual ground truth depends on the user. For this
reason, we simply use the tuples in the inner and outer cubes of the synthetic datasets as
surrogates for two possible versions of ground truth.

Figure 4-15 plots the accuracy statistics as c increases. Each column of figures plots the
results of a dataset, and each curve uses the outer or inner cube as the ground truth when
computing the accuracy statistics. Note that for each dataset, the points for the same c

value represent the same predicate. As expected, the F-score of the outer curve peaks at a
lower c value than the inner curve. This is because the precision of the outer curve quickly
approaches 1.0, and further increasing c simply reduces the recall. In contrast, the recall of
the inner curve is maximized at lower values of c and reduces at a slower pace. The precision

108

Inner Outer

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

● ●●

● ●●

● ●●

● ●
●

● ●
●

● ●●

F
−

S
core

P
recision

R
ecall

0 200 400 600 0 200 400 600
Cost (sec)

S
ta

tis
tic

C ● 0 0.1 0.5

Figure 4-16: Accuracy statistics as execution time increases for NAIVE on SYNTH-2D-Hard

statistics of the inner curve on the Easy dataset increases at a slower rate because the value
of the outliers are much higher than the normal tuples, which increases the predicate’s ∆
values.

Figure 4-16 depicts the amount of time it takes for Naive to converge when executing on
SYNTH-2D-Hard. The left column computes the accuracy statistics using the inner cube as
ground truth, and the right column uses the outer cube. Each point plots the accuracy score
of the most influential predicate so far, and each curve is for a different c value. NAIVE
tends to converge faster when c is close to zero, because the optimal predicate involves fewer
attributes. The curves are not monotonically increasing because the the optimal predicate as
computed by influence does not perfectly correlate with the ground truth that we selected.

Takeaway: Although the F-score is a good proxy for result quality, it can be artificially
low depending on the value of c. NAIVE converges (relatively) quickly when c is very low but
it can be very slow at high c values.

4.12.2 COMPAR ING ALGOR I THMS
The following experiments compare the accuracy and runtime of the DT, MC and NAIVE
algorithms. Figure 4-17 varies the c parameter and computes the accuracy statistics using
the outer cube as the ground truth. Both DT and MC generate results comparable with
those from the NAIVE algorithm. In particular, the maximum F-scores are similar.

Figure 4-18 compares the F-scores of the algorithms as the dimensionality varies from

109

SYNTH−2D−Easy SYNTH−2D−Hard

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

●

● ● ●●
●

●

●

●

● ● ●● ●

● ●

● ● ● ●●
●

●

●

●

●

● ●●

●

●

●

●

● ● ●● ● ● ●

● ●

● ●●

●

●

●

F
−

S
core

P
recision

R
ecall

0.0 0.2 0.4 0.0 0.2 0.4
C parameter

S
ta

tis
tic

Algorithm ● DT MC Naive

Figure 4-17: Accuracy measures as c varies

Easy Hard

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

●

●●
●

●

●

●●

●

●

●● ●● ●
●

●
●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

2D
3D

4D

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
C parameter

F
−

S
co

re

Algorithm ● DT MC Naive

Figure 4-18: F-score as dimensionality of dataset increases

2 to 4. Each row and column of plots corresponds to the dimensionality and difficulty of
the dataset, respectively. As the dimensionality increases, DT and MC remain competitive
with NAIVE. In fact, in some cases DT produces better results than NAIVE. Partly because
because NAIVE splits each attribute into a pre-defined number of intervals, whereas DT
can split the predicates into any granularity, and partly because NAIVE doesn’t terminate
within the 40 minutes at higher dimensions – running it to completion would generate the
optimal predicate.

110

2D 3D 4D

10

100

1000

● ●● ● ●●
●

●

●
●

●● ●● ●●
●●

●●

●

●
●●

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
C parameter

C
os

t (
se

c,
 lo

g)

Algorithm ● DT MC Naive

Figure 4-19: Cost as dimensionality of Easy dataset increases

2D 3D 4D

10

100

1000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 50 100 10 50 100 10 50 100
Tuples (thousands)

C
os

t (
se

c,
 lo

g)

Algorithm ● DT MC Naive

Figure 4-20: Cost as size of Easy dataset increases (c=0.1)

Figure 4-19 compares the algorithm runtimes while varying the dimensionality of the
Easy synthetic datasets. The NAIVE curve reports the earliest time that NAIVE converges
on the predicate returned when the algorithm terminates. We can see that DT and MC
are up to two orders of magnitude faster than Naive. We can also see how MC’s runtime
increases as c increases because there are less opportunities to prune candidate predicates.

Figure 4-20 uses the Easy datasets and varies the number of tuples per group from 500
(5k total tuples) to 10k (100k total tuples) for a fixed c = 0.1. The runtime is linear with
the dataset size, but the slope increases super-linearly with the dimensionality because the
number of possible splits and and merges increases similarly. We found that DT spends
significant time splitting non-influential partitions because the standard deviation of the
tuple samples are too high. When we re-ran the experiment by reducing the variability
by drawing normal tuples from N (10, 0) reduces the runtime by up to 2×. We leave more
advanced optimization techniques, e.g., early pruning, parallelism to future work.

Takeaway: DT and MC generate results competitive with the exhaustive NAIVE algorithm
and reduces runtime costs by up to 150×. Algorithm performance relies on data properties,
and scales exponentially with the dimensionality in the worst case. DT’s results may have

111

higher F-scores than NAIVE because it can progressively refine the predicate granularity.

4.12.3 CACH ING OPT IM IZAT ION
The previous experiments showed that the result predicates are sensitive to c, thus the user
or system may want to try different values of c (e.g., via a slider in the UI or automatically).
DT can cache and re-use its results because the partitioning algorithm is agnostic to the c

parameter. Thus, the DT partitioner only needs to execute once for Scorpion queries that
only change c.

The Merger can similarly cache its previous results because it executes iteratively in a
deterministic fashion – increasing the c parameter simply reduces the number of iterations
that are executed. Thus Scorpion can initialize the merging process to the results of any
prior execution with a higher c value. For example, if the user first ran a Scorpion query
with c = 1, then those results can be re-used when the user reduces c to 0.5.

Easy Hard

0
10
20
30
40

0
10
20
30
40

●●● ●● ●●

●

●

● ●

●

●●● ●

●●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

3D
4D

0.00.10.20.30.40.5 0.00.10.20.30.40.5
C parameter

C
os

t (
se

c)

● Cache No−cache

Figure 4-21: Cost with and without caching enabled

Figure 4-21 executes Scorpion using the DT partitioner on the synthetic datasets. We
execute on each dataset with decreasing values of c (from 0.5 to 0), and cache the results so
that each execution can benefit from the previous one. Each sub-figure compares Scorpion
with and without caching. It is most beneficial to cache Merger results at lower c values
because more predicates are merged so there are less predicates to consider merging. When
c is high, most predicates are not expanded, so the cache doesn’t reduce the amount of work
that needs to be done.

Takeaway: Caching DT and Merger results for low c values reduces execution cost by up
to 25×.

112

4.13 REAL-WORLD DATASETS
To understand how Scorpion performs on real-world datasets, we applied Scorpion to the
INTEL and EXPENSES workloads. Since there is no ground truth, we present the predicates
that are generated and comment on the predicate quality with respect to our expectations
and further analyses. The algorithms all completed within a few seconds, so we focus on
result quality rather than runtime. In each of the workloads, we vary c from 1 to 0, and
record the resulting predicates.

4.13.1 I NTE L DATASET
For the first workload, the outliers are generated by Sensor 15, so Scorpion consistently
returns:

sensorid = 15

However, when c approaches 1, Scorpion generates the predicate:

light ∈ [0, 923] & voltage ∈ [2.307, 2.33] & sensorid = 15

It turns out that although Sensor 15 generates all of the high temperature readings, the
temperatures vary between are 20oc higher when its voltage, and surprisingly, light readings
are lower.

In the second workload, Sensor 18 generates the anomalous readings. When c = 1,
Scorpion returned:

light ∈ [283, 354] & sensorid = 18

Sensor 18’s voltage is abnormally low, which causes it to generate high temperature
readings (90oc− 122oc). The readings are particularly high (122oc) when the light levels are
between 283 and 354. At lower c values, Scorpion returns:

sensorid = 18.0

In both workloads, Scorpion identified the problematic sensors and distingushed between
extreme and normal outlier readings.

113

4.13.2 CAMPA IGN EXPENSES DATASET
In this workload, we defined the ground truth as all tuples where the expense was greater
than $1.5M. The aggregate was SUM and all of the expenses were positive so we executed
the MC algorithm. When c ∈ [0.2, 1], Scorpion generated the predicate:

recipient_st = ‘DC′ & recipient_nm = ‘GMMB INC.′ &

file_num = 800316 & disb_desc = ‘MEDIA BUY′

Although the F-score is 0.6 due to low recall, this predicate best describes Obama’s
highest expenses. The campaign submitted two “GMMB INC.” related expense reports. The
report with file_num = 800316 spend an average of $2.7M. When c ≤ 0.1, the file_num clause
is removed, and the predicate matches all $1 + M expenditures for an average expenditure
of $2.6M.

4.14 CONCLUS ION
As data becomes increasingly accessible, data analysis capabilities will shift from specialists
into the hands of end-users. These users not only want to navigate and explore their data,
but also probe and understand why outliers in their datasets exist. Scorpion helps users
understand the origins of outliers in aggregate results computed over their data. In particular,
we generate human-readable predicates to help explain outlier aggregate groups based on
the attributes of tuples that contribute to the value of those groups, and introduced a
notion influence for computing the effect of a tuple on an output value. Identifying tuples of
maximum influence is difficult because the influence of a given tuple depends on the other
tuples in the group, and so a naive algorithm requires iterating through all possible inputs to
identify the set of tuples of maximum influence. We then described three aggregate operator
properties that can be leveraged to develop efficient algorithms that construct influential
predicates of nearly equal quality to the exhaustive algorithm using orders of magnitude less
time. Our experiments on two real-world datasets show promising results, accurately finding
predicates that “explain” the source of outliers in a sensor networking and campaign finance
data set.

114

5 Exploratory & Explanatory
Visualization

The previous chapters laid the foundations for an explanatory visualization system. Chapter 3
described a provenance managament system that can efficiently track fine-grained record-
level provenance and Chapter 4 developed the algorithms to use this provenance information
to generate hypotheses that explain anomalies in aggregation query results. The missing
piece is the interface for using these results as part of visual data analysis.

This chapter introduces DBWipes, an end-to-end visual analytics system that brings
together the functionalities introduced in the previous chapters. Users can point DBWipes
at a database and generate visualizations for aggregation queries, and interactively filter
and navigate through the dataset. The system is integrated with Scorpion, so users can ask
questions about anomalies in the visualization and assess and compare the quality of the
generated explanations. We first introduce the basic DBWipes interface for querying and
navigation, then describe the interface for interacting with Scorpion, and finally present the
results of a user study to assess the efficacy of Scorpion’s interface for analyzing visualization
outliers.

5.1 BAS IC DBWIPES INTERFACE
DBWipes is designed to facilitate rapid navigation though a dataset in the spirit of systems
such as Splunk [121] and Tableau [102]. Similar to these systems, DBWipes renders a primary
visualization and provides an faceted navigation interface to interactively specify filters over
the dataset. In contrast to these systems, DBWipes also provides features that help assess
how much subsets of the data impact outliers in the visualization.

The goal of the DBWipes system is to help users see an overview of the dataset, filter
the dataset by combinations of attribute values, evaluate the impact of explanations in
the form of predicates, and visualize aggregated statistics. To this end, we developed three
interface components (shown in Figure 5-1) to address these goals. The left-hand column (A)
shows the faceting interface, which renders an overview of each dataset attribute as a value

115

distribution and provides controls for users to interactively filter the dataset by forming
conjunctive predicates. The contextual panel in the center column (B) lists different classes
of filters that have been applied to the query. The right-hand column (C) contains the main
visualization, which compares the results of the aggregation query over different subsets of
the data. In this section, we describe these main components in more detail.

(A)! (B)! (C)!

Figure 5-1: Basic DBWipes interface.

5.1.1 FACET ING INTERFACE
The faceting interface (Figure 5-1(A)) provides faceted navigation between attribute distri-
butions and the main visualization. The attributes in the database are rendered as rows
in the interface; the left column lists the attribute name and type, and the right column
renders a distribution of the attribute values as a bar chart. The attributes are listed in the
same order as they appear in the table’s schema definition, however alternative ordering
(e.g., by statistics over the attribute values) are possible as well.

DBWipes currently renders univariate distributions where the x-axis lists each attribute
value (or value range if the attribute type is quantatative) and the y-axis represents the
number of database records with the corresponding attribute value(s). The y-axes can be
rendered in log-scale if the variance in the cardinalities is significant. For example, the
distribution for the State attribute shows that there are significantly more sales records in
California than the other states.

Specifying Filters
Users select ranges in the attribute distributions (also called brushing) to specify conjunctive
predicates over the dataset. We call these predicates facet selections. For example, Figure 5-2
shows the result of brushing the Female value of the gender attribute (B), which specifies the

116

(A)! (B)!

(C)!

(D)!(E)!

Figure 5-2: Faceted navigation using DBWipes.

predicate gender = Female. The bars corresponding to the selected values are highlighted
in black, and statistics about the selected values (the number of distinct selected values and
the number of records that match the per-attribute predicate) are listed in the left column
under the attribute value (A). Handles on the selection can be used to interactively move
and resize the selection, and clicking outside of the selection clears it.

Brushing multiple attributes result specifies the conjunction of the individual attribute
predicates. DBWipes does not currently support disjunctions, due to the risk of complicating
the interface.

Specifying facet selections will temporarily update the interface to reflect the query
results over the filtered data. The update is temporary because interacting with the facet
selections changes the predicate. The main visualization turns the original visualization
grey and overlays the updated query results in color so that users can easily compare the
predicate’s effects (C). In addition, the facet selection is listed textually in the middle
column’s Temporary Filters section. Clicking the “×” button in the textual representation
removes the predicate and clears the corresponding selection in the faceting interface.

Toggling Negation
The user can negate the predicate listed in the temporary filter by toggling the select/remove
switch (Figure 5-2(E).) This is a proxy for the amount that the predicate contributes to the
query’s result values. For example, Figure 5-3 shows the results of toggling the switch in the
example interface. The temporary filter has been negated to not(gender = Female) (B),
and the main visualization is updated to reflect the negated predicate (C). The result shows
that ignoring female sales uniformly shifts the distribution down, but does not affect the
slope of the distribution. This suggests that female sales may not be the primary contributor
to the upward trend.

117

(C)!

(B)!(A)!

Figure 5-3: Negating a predicate illustrates its contributions to the aggregated results.

If the aggregation operator is sum, it is possible to directly infer this result from the non-
negated predicate by mentally subtracting the updated values from the orginials. However,
this feature is important for aggregation operators such as average or standard deviation,
where estimating the amount of contribution is non-trival or even impossible. Our experiments
in Section 5.9 found that this is indeed the case.

Permanent Filters

(B)!

(A)!

(C)!

(D)!

Figure 5-4: Setting a predicate as a permanent filter.

When the user specifies a predicate as a Permanent Filter, it has the effect of re-initializing
the DBWipes interface with an updated aggregation query containing the predicate (Figure 5-
4). This will naturally update the main visualization (D) as well as the distributions in
the faceting interface (C). Users click on the “Make Permanent” button to add the current
temporary filters to the list of permanent filters. We distinguish between permanent and
temporary filters because updating the distributions in the faceting interface requires
computing an aggregation query for each attribute in the table. This can be very expensive

118

for tables with many attributes (some datasets contain almost 2000 attributes).

5.2 SCORP ION INTERFACE

(A)!
(B)!

(C)!

Figure 5-5: Scorpion query form interface.

Scorpion extends the DBWipes interface by allowing users to select anomalies in the
main visualization and ask questions about them (Figure 5-5). The user can bring up the
Scorpion interface (C) by selecting a set of points in the main visualization (A) or clicking
“Toggle Scorpion” (B). The form contains two buttons to specify the user’s selection as
examples of outlier values or as normal values. A badge within each button shows the total
number of outliers and normal results that have been specified. Scorpion compares the mean
values of the outlier and normal examples to decide if the outlier values are too low or too
high.

(B)!(A)!

Figure 5-6: Interface to manually specify an expected trend.

Alternatively, the user can explicitly specify the desired value of each outlier value by
clicking on the “Click to draw expected values for selected results” button (Figure 5-6(A)) and

119

drawing a desired trend line (B). DBWipes will compute the expected values by interpolating
along the drawn line.

(A)!

(B)!

(C)!

(D)!

Figure 5-7: Selecting a Scorpion result in DBWipes.

Scorpion generates explanations as a list of predicates shown in the Scorpion Results
section at the bottom of the center contextual panel. By default, DBWipes lists the top
results for every c parameter between 0.1 and 1 (see Chapter 4 Section 4.4.3 for a description
of the c parameter). The results are listed from the largest absolute impact on the outliers
(low c parameter) to the largest impact per record (high c parameter.) The layout is intended
to be consistent with that of the Temporary and Permanent Filters.

(a) The λ-slider trades off high
absolute impact with high per-
record impact.

(b) A locked result is rendered
using a dark navy fill.

(c) The interface updates a list
of the top results Scorpion has
found so far.

DBWipes adds a slider so users can specify different values of the parameter λ1 and
view the top results for selected parameter value. For example, Figure 5-8a depicts the

1Although it is admittedly confusing, the DBWipes interface calls Scorpion’s c parameter λ because λ is

120

top predicates for λ = 0.349, which are dominated by subsets of the predicate gender =
Female & state = PA.

Users can hover over a result to view its effects on the aggregated query (Figure 5-7).
The result turns bright blue (A), and it is added as a temporary filter (B). The corresponding
attribute values in the faceting interface are highlighted (C), and the main visualization
updates to reflect the temporary filter (D). In this case we find that the predicate state ∈
{CA, PA} matches records with a strong upward trend similar to the trend in the complete
dataset.

When the cursor moves away from a result, the interface automatically reverts to the
orginial query. If the user moves the cursor between two Scorpion results in order to compare
their effects in the visualization, this visualization will swap between the first result, the
original query, and the second result. This intermediate visualization state makes it difficult
to directly compare the two results. To avoid this issue, users can lock a result in place by
clicking on it. This colors the result as dark navy (Figure 5-8b) and ensures that the interface
reverts to the locked result rather than the original query whenever the cursor moves away
from any result. Now, the interface will continue to show gender = Female & state = PA

until the user hovers over another result.
While Scorpion is running, DBWipes updates the interface with the best results that

have been found so far (Figure 5-8c). These partial results are rendered in grey to distinguish
them from Scorpion’s final results. Users can select and lock the results in a consistent
manner as with the final results. The main distinction is the absence of the λ slider, which
is only shown for the final results.

5.3 IMPLEMENTAT ION
The DBWipes prototype is implemented as a HTML and ECMAScript browser application
hosted from a Python server that communicates with a PostgreSQL backend. The browser
application translates user interactions into SQL queries sent to the backend, which executes
querys, caches intermediate results, and interfaces with Scorpion. We currently support
aggregation queries with a single group-by attribute and over a single table. However
DBWipes supports multiple aggregation statements in the SELECT clause, and renders
each statement as a separate series with different colors in the visualization.

DBWipes is integrated as the visual analytics system for DataHub [15], a data hosting
platform developed at MIT, University of Maryland and UIUC, that provides functionality

more commonly recognized as a system parameter. Thus, we use λ to refer to Scorpion’s c parameter in the
rest of this chapter.

121

to upload, clean, version and share datasets. Users can use DataHub to upload their datasets,
and interact with them using DBWipes.

5.4 EXPER IMENTAL SETUP
We conducted a comparative user study between DBWipes with and without the Scorpion
interface. Users performed three analysis tasks to explain outliers in a visualization and our
goal was to compare the task completion times, the usefulness of the Scorpion interface, and
understand different search techniques that users take when completing the tasks.

We chose DBWipes because it is similar to commonly used visual exploration tools such
as Tableau [2, 102] or Splunk [121] but specifically designed for solving the types of tasks
in this study. Its integration with Scorpion means we do not need to train subjects in two
separate systems and its web-based interface lets remote subjects participate without the
need to install any software.

5.4.1 PART IC I PANTS

We recruited 13 participants that all have experience performing data analysis. 3 of the
participants do not have a degree associated with computer science, 3 are graduate students
in computer science, and the rest are data analysts or researchers at a European telecom
company. Their experience with structured data analysis tools and their technical expertise
vary from users that primarily use Excel to professional data research scientists. To evaluate
their technical expertise, we asked subjects to self-rate their experience with SQL (as a
proxiy for technical expertise) on a likert scale, with 1 being no knowledge of the language
and 7 understanding how nested-queries, and group-bys work; the median score was 6, and
the mean score was 4.8 because five participants self-rated a score of 4 or less (Figure 5-9).
In terms of data analyst archetypes [62], the users with low expertise tended to be Scripters,
with some working knowledge of programming languages such as Java or Python, and
Application Users that primarily used GUI interfaces such as Excel. High expertise users
tended to have or were pursuing advanced degrees in Computer Science. We labeled users
with an expertise score < 5 as novices, and the rest as experts. Participants had never used
the DBWipes nor the Scorpion interface, and few had direct experience with Tableau-like
tools.

122

● ● ●
●

● ● ●
●
●
●

●
●
●

1 2 3 4 5 6 7
Expertise

S

ub
je

ct
s

Figure 5-9: Distribution of Participant Expertise

5.4.2 EXPER IMENTAL PROCEDURES
We first asked participants to complete a pre-study questionnaire to state their demographic
information and past experience with data analysis tools.

We then presented users with a three-part tutorial consisting of an introduction to the
basic DBWipes tool (without scorpion), a verification task that tests the user’s understanding
of the interface, and an introduction to the Scorpion plugin. During this portion of the study,
users could ask questions about the interface and we either referred the user back to the
tutorial if it addressed the question or answered the question ourselves.

Following the tutorial, we asked users to complete three analysis tasks using DBWipes
with or without Scorpion. Every user completed the same tasks, however the presence of the
Scorpion tool was randomized. We also randomized the order that the tasks were presented
to the user. In each task, we present the user with the visualized result of an aggregation
query in the DBWipes interface, and specify a set of outlier aggregate values that we ask
the user to explain.

Afterwards, the participants completed a post-study questionnaire and concluded with
follow-up questions that the facilitator generated while watching the user during the study.
When possible, we recorded the user’s screen for the duration of the study.

5.4.3 TASK SPEC I F ICAT IONS
The tasks vary in the type of aggregation query that we ask the user to explain, and the
outliers in the underlying dataset. We designed two types of queries and two datasets for a
total of 4 possible tasks. One of the possible tasks, described below, is ambiguous so we did
not include it in the study.

123

Queries
The study uses two query templates that compute the total and average sales amounts for
each day in the dataset.

SELECT day, sum(amt) FROM <table> GROUP BY day (Q5)

SELECT day, avg(amt) FROM <table> GROUP BY day (Q6)

The first query is designed to be easy to solve, because outlier values in the aggregation
query (sum(amt)) are correlated with the cardinality of the attribute values, thus the
anomalous attributes values are easily distinguishable in DBWipes’ faceting interface. In
contrast, the second query is designed to be challenging, because the aggregate values are
not influenced by the cardinality of the attribute values and not discernable in the faceting
interface. Our results show that this distinction affects the quality of the explanations that
the users manually come up with.

Datasets
We generated three synthetic sales datasets for the study. One, called simple, is designed for
use during the tutorial, and the others, called hard1 and hard2 are designed for the study
tasks. The schema for the datasets are as follows:

sales(day int, state text, age text, gender text, amt float, id serial)

The domain of each attribute is as follows: day varies from 0 to 9, state is one of 41
US states, age is discretized into 4 categories, gender consists of M or F , amt is a positive
floating point number, and id is a serially ordered primary key for the records. For simple,
we reduced the cardinality of the state domain to 9 states:

day ∈ [0, 9]

state ∈ {AL, AK, . . . , WI, WY }

age ∈ {< 18, 18− 30, 30− 50, > 60}

gender ∈ {M, F}

amt ∈ R+

id ∈ N

124

The baseline data generation process creates n ∈ N (µn, σn) records per state per day,
where n is sampled from a normal distribution centered at µn = 50 with a standard deviation
of σn = 5. The value of the amt attribute vamt ∈ N (µamt, σamt) is sampled from a normal
distribution where µamt = 100 and σamt = 5. The value of the other attributes are sampled
uniformly at random from their respective domains.

We generated synthetic outliers for the task datasets so that the correct removal of the
outliers would have a visibly noticable change in the visualized query results. To generate
outliers, we apriori pick a set of attribute values and vary the parameters of the two above
normal distributions. The “ground truth” values for each dataset is the aggregated value at
day 0.

For hard1, we increased the number of records for CA and MI during days 5 to 9 by a
multiplicative factor µn = 100× (day − 4)× 1.15. In addition, we increased µamt for specific
values of the state and age attributes using the following criteria:

µamt =

µamt + 50 if state ∈ {CA, MI}

µamt × 3 if state = FL

µamt =

µamt + 50 if age = ‘ > 60′

µamt + 20 if age = ‘ < 80′

Using this criteria, there are numerous combinations of attributes that describe high amt
values, however CA and MI are expected to dominate the total sales. We combined this
dataset with Q5 as one of the study tasks. We did not consider Q6 because the dataset did
not contain a clear set of outlier records that we could define as ground truth.

For hard2, we generated outlier amt values during days 3 to 6 for the states MA and WA.
For MA, we increased the mean value multiplicatively by µamt = µamt×1.15∗ (6−|4−day|)
so that the value is maximized on day 4. For WA, we increased µamt by 20, and µn by
60. In this way, the number of sales in MA stay constant yet the amount of each sale
increases significantly, which has an effect of influencing the average sales amount during the
anomalous days. In contrast, the number of sales in WA increases greatly while the amount
per sale increases modestly, so that it affects the total sales per day by a large amount. We
combined this dataset with Q5 and Q6 to create two of the study tasks.

To summarize, each user was presented with a randomized ordering of the following
three tasks: Q5×hard1 (T1); Q5×hard2 (T2); Q6×hard2 (T3).

125

5.4.4 TASK INTERFACE
Figure 5-10 shows the interface for task T3. The top of the interface presents the task
question on the left (A) and an answer form on the right. The grey points highlighted in
the red rectangle (B) are the visualized outliers that the user is asked to explain. (C) shows
a textual representation of the current candidate predicate that has been selected (D) in
the faceting interface. The blue scatterplot (E) visualizes the results of executing Q6 on the
records that match the candidate predicate. The user can add the candidate predicate as an
answer by clicking on “Add Filter to Answer” (F).

(B)!

(E)!

(F)!

(C)!

(D)!

(A)!

Figure 5-10: Task interface for task T3

5.5 QUANT I TAT I VE RESULTS
We used R and lme4 [11] to perform a linear mixed effects analysis of the relationships
between two dependent variables – task completion time and explanation quality – against
the tool. As fixed effects, we used the tool (DBWipes with and without Scorpion), the task,
and expertise (without interaction terms). As random effects, we used the intercepts for
subjects. We ran the Levene test to check that the differences between the variances of the

126

dependent variables for each test condition (the heteroscedasticity) and found that they
were not significant (> 0.66).

The task completion times were defined as the duration from the start of the task to
when the user clicked submit, and were log-transformed to better approximate a normal
distribution.

We computed the response scores from the amount that each aggregate value moved
towards the true aggregate value given the user’s explanation. Let p be the user’s explanation
(predicate), D be the task dataset, and vi and v′

i be the aggregated value at day i over D

and ¬p(D) respectively. Furthermore, let d and g be the set of days with anomalous and
normal results, respectively. Recall that v0 is designed to be the true aggregated value of
each day. Thus, we define the response score si for day i as:

si = |vi − v0| − |v′
i − v0|

|vi − v0|

We defined a general response score that computes the average score for the outlier days
and penalizes the amount that the results on the normal days deviate from their original
values:

scoreα = α×
∑
i∈g

si

|d|
− (1− α)×

∑
i∈g

si

|g|

Since removing records from the dataset will inevitably have an effect on the result
values, we use α to control the amount of penalization. When α = 1, we only care about
fixing the outlier days, whereas α = 0.5 equally weights outlier and normal days. We report
significance results for varying values of α

5.6 SCORP ION REDUCES ANALYS I S T IMES
We found a significant main effect for tool (p < 0.01), a moderately significant effect for task
(p = 0.051) and no significant effect for expertise (p = 0.69).

Task T1 was designed to have a distinctive “bump” in the facets that directly explains
the outliers days 5− 9. Users easily found and tested the bump and were satisfied by the
amount it affects the outliers. For this reason, the median task completion times were nearly
equivalent between the two tools.

For tasks T2 and T3, the predicates were less obvious from the facets and Scorpion helped
users complete the task 2× and 1.3× faster than those that answered the task manually.
Moreover, the tasks were designed so the main outlier effects could be explained using

127

T1

T2

T3

0.0 2.5 5.0 7.5 10.0
Task Completion Time (minutes)

No Scorpion Scorpion

Figure 5-11: Task completion times for each task and tool combination.

single-attribute predicates. As the dimensionality of the explanation increases, we expect
the Scorpion to have a much larger effect on completion times.

5.7 SCORP ION IMPROVES ANSWER QUAL I TY

T1

T2

T3

−0.5 0.0 0.5 1.0
Answer Score

No Scorpion Scorpion

Figure 5-12: score1 values for each task and tool combination.

Our analysis of score1 values found a significant main effect for tool (0.021) a slight effect
due to task (0.06) and no significant due to expertise (0.109). Figure shows the individual and

128

median score1 values by task and tool. We found that Scorpion consistently finds predicates
that explain the aggregated outliers.

For T2, the outliers are explained by the states state ∈ {MA, WA}, however only WA

appears as an outlier in the faceting interface. Thus all but one user failed to manually
identify the MA value. In contrast, every user that used the Scorpion interface submitted
an explanation that contained both states. Similarly for T3, the outlier results are primarily
explained by state = MA, which is not distinctive in the faceting interface. Thus, all but
one of the manual solutions were misled by the high cardinality of state = WA and chose it
as the answer.

The very low score1 for T2 without Scorpion was because the user selected gender = M

as the explanation, which reduced the outlier results by over twice their distance from the
ground truth values, leading to a negative score.

T1

T2

T3

−0.6 −0.3 0.0 0.3
Answer Score

No Scorpion Scorpion

Figure 5-13: score0.5 values for each task and tool combination.

As we reduce α, the significance of the tool’s effect on scoreα decreases. For example,
when α = 0.8, the tool has an effect with p = 0.04, and when α = 0.5 (Figure 5-13), the
tool does not have a significant effect p = 0.11. This is because Scorpion returns a list of
explanations that vary in their effect on the outlier and normal results. Several users tended
to pick the first explanation in the list, which has a large effect on every result value and
thus penalized by the negative term in the scoring function.

We note that Scorpion does include more precise explanations that only effect the outlier
values. A possible reason why users do not pick more precise explanations (when we measure
the score using lower alpha values) may be because they do not cause a easily perceivable
change in the main visualization and are regarded as uninteresting. A solution may be to

129

dynamically rescale the y-axis so that the changes to the outliers are significant. Alternatively,
the interface could provide numerical scores that summarize the amounts that each predicate
affects the outlier and non-outlier results.

5.8 SE LF -RATED QUAL I TAT IVE RESULTS

T1

T2

T3

1 2 3 4 5 6
Difficulty (1 = Trivial, 7 = Impossible)

No Scorpion Scorpion

Expert

Novice

1 2 3 4 5 6
Difficulty (1 = Trivial, 7 = Impossible)

No Scorpion Scorpion

Figure 5-14: Self-reported task difficulty by task, expertise.

In the post-study feedback, we asked users to rate the perceived difficulty of each task.
Figure 5-14 plots the reported task difficulties by task and expertise. We found a significant
effect due to tool (p < 0.001) and expertise (p = 0.008) and no effect due to task (p = 0.15).
When asked about the difficulty rating, a participant commented that it’s “probably impossible
for human being to find the best answer. . . won’t know if it’s good or not”. Others stated that

130

they “wouldn’t exhaustively try all combinations”. We found that novice users perceived the
greatest difference in difficulty between the two tools.

We then asked users to comment on the quality of explanations that Scorpion generated
on a likert scale, where 1 is not useful and 7 is very useful. All users reported a rating of
5 or above, and the majority reported 7. One user noted, “Instead of me doing the search,
(Scorpion) presented a list of . . . best guesses.”

DBWipes

Scorpion

1 2 3 4 5
Experience (1 = Enjoyable, 7 = Complex and Frustrating)

DBWipes Scorpion

Figure 5-15: Self-reported experience using the tools.

Finally, we asked users to self-rate their experience using the baseline DBWipes tool and
the tool with scorpion (Figure ??) on a likert scale where 1 is enjoyable and easy to use and
7 is the interface was complex and frustrating to use. Both tools were rated with a median
of 2. One user rated Scorpion with a 5 because the λ slider component of the interface was
difficult to understand, however she also noted that it was “easy to solve all Scorpion tasks,
because the tool is easy to use.”

Despite these positive findings, we caution that these results should be taken with a
grain of salt, because the selection process for gathering the participant population may bias
the participants to those that are amicable to new tools such as Scorpion.

5.9 STRATEG I E S FOR M IN ING EXPLANAT IONS
We asked users to describe their strategy for solving each task. This section describes
how users pick which combinations of attribute values to evaluate using each of the tools,
how users evaluate a given explanation, and their confidence in their answers, and their
impressions with the scorpion interface.

131

Manual Strategies

(a) Interface for T1.

(b) Interface for T2 and T3.

Figure 5-16: State facet interfaces (synthetic outliers highlighted in black.)

When users were asked to manually solve the tasks, the majority of the users systematically
tried every attribute value one-by-one. Users first started with age because it was listed at
the top, trying each age range individually, followed by gender, then finally state.

Almost all users exhaustively tested each individual age and gender value, and many users
even tried all combinations of the two attributes, however few users exhaustively tested all
41 state values. Instead, users used the facets to look for skewed distributions (Figure 5-16)
and focused on exploring the skewed regions (e.g., CA and MI for T1). Unfortunately, this
led users down the wrong track for tasks T2 and T3, because only the state WA appeared
as an outlier whereas MA was the dominant factor. As one user later noted, “(I) thought I
had a good shortcut by . . . looking for states that jumped out (in the facets) . . . turned out
not a good idea because i missed a lot.”

Unfortunately, the number of possible combinations of attribute values is exponential in
the cardinality of the attributes (5 ages× 3 genders× 42 states = 630 total combinations).
As one user commented, her strategy was to “just try one by one, didn’t try combinations,
because the number of combinations would be a large number”. Users quickly became fatigued
when trying each state individually, and often gave up before finding the optimal predicate.
One user said, “I suppose as a human, I got bored.”

Most users used the amount that the normal results were affected as a proxy for the
selectivity of the candidate predicate, and disregarded those that appeared to have low
selectivity. Several users first filtered the visualization to only show the outlier days (i.e., used
a permanent filter on the day attribute) and solved the task by examining how candidate
predicates affected those days. This led to problems where the user spent a long time to
pick a predicate that ultimately affected the normal days, leading to a low score0.5.

132

When describing how they would approach similar tasks in practice, the users stated that
they would use a similar strategy as that they used in the study. One user with experience
with Tableau mentioned he would use it to solve the task, however when probed further, he
say he would “manually create filter widgets and . . . uncheck them one by one and see how
they change the visualization. . . might try to create a DBWipes facet visualization.” A few
expert users stated that they would write a program to try all combinations automatically
and use a visualization similar to DBWipes to visualize the results.

Strategies Using Scorpion
Users used Scorpion to quickly generate a set of explanations (often within a minute). For
most users, their subsequent strategy centered around Scorpion’s top results. Some users
immediately submitted the top suggestion, or tried the top several suggestions and submitted
the one they most preferred – in both cases, the users cited that they trusted Scorpion’s
suggestions. This type of automation reliance [38] can potentially be unhelpful because
Scorpion does not use any domain-specific information and may sometimes suggest attributes
that represent dangerous or non-sensical real-world properties. Increasing the algorithmic
transparency, such as explaining the attributes that have been explored or the evaluation
criteria, can help assuage such over-reliance [70].

Other users spent the rest of the task evaluating and refining Scorpion’s suggested results.
As one user described, “Scorpion’s returned filters are at least a good baseline to understand
what’s going on. It saves the initial time that I would have spent clicking on a bunch of
different filters.”

Only one user combined independent manual searching with Scorpion’s suggestions. The
user used Scorpion to identify a single dominant attribute, then explored subsets of the
attribute to verify that the suggested filter was indeed influential. He then re-ran Scorpion
with the attribute removed to find alternative recommendations and repeated the process
until the suggested predicates did not adequately influence the outliers.

Most users were confused by the λ slider interface and either ignored it completely or set
it to display the suggestions with the highest absolute impact. During the feedback, users
mentioned that they would find it useful in real applications, however it was not needed in
the study tasks.

Predicate Evaluation
We observed that users evaluated candidate predicates the same way irrespective of the
aggregation function – they used the (non-negated) predicate to filter the dataset and

133

visually inspected the query results over the filtered data. “if (I) saw it was similar, (I
would) conclude that it was related to the outliers”. Although this heuristic is accurate when
the aggregation function is sum, it led to suboptimal results for Q6.

For example, the sales amount in the state WA are much higher than the average amount
thus the visualization distinctly “replicates the bump in the overall curve.” This misled many
users to believe it has a similarly significant effect on the outlier values. In reality, its effect
is minimal and the state MA most effects the outliers. Unfortunately, many users used this
strategy for T3, which is why the difference in score1 is most pronounced. The small number
of users that used the Select/Remove slider to visualize the query results of the negated
predicate were not misled.

Users care about the trade-off between the number of records that match a predicate
and its effect on the outliers. For example, Scorpion includes a predicate for task T1 that
matches one third of the states, which significantly reduces the total sales for all days. Users
typically did not pick this predicate because “(excluding) roughly a third of the states seems
like it wouldn’t be useful. . . (whereas) the alternative filter which only looked at MA also
adequately explained the trend”. Another user commented that “some suggested filters where
too broad, some too specific.” Thus, users ended up making a trade-off when picking which
Scorpion result to pick.

Several users complained that the need to hover over a Scorpion result to view it in the
visualization made it difficult to compare results. One user suggested rendering all of the
Scorpion suggestions in the visualization so they can be directly compared. Several other
users wanted some way to quantify the impact that each result has on the outliers, ideally
“in the same units as the aggregate measure”. Most were satisfied with our suggestion to label
each result with a value similar to score1 used in this evaluation, along with its cardinality.

User Confidence
We asked users to describe their confidence in their answers and what would improve their
confidence. For the manual tool, users consistently stated that systematically searching
through all attributes combinations would increase their confidence, but that approach would
take too long.

There were a number of reasons why Scorpion users expressed low confidence: one
non-expert user forgot how the interface worked and was not confident that s/he was using
it correctly; several others wanted to understand how the algorithm worked. In both cases,
when we explained that the user used the interface correctly and how the algorithm worked,
the users increased their confidence rating. This suggests that a Wizard interface [106] may

134

be appropriate for non-expert users, and additional information about how Scorpion searches
for results would increase user confidence.

Other Scorpion users were confident in their answers. One non-expert user stated that
“in a big way, (Scorpion) was a confidence builder. Having some kind of algorithm generate
(results) for you helps the confidence"

5.10 CONCLUS ION
This chapter introduced DBWipes, an interface for exploring and explaining anomalies
in visualization that is integrated with the Scorpion outlier explanation tool described in
Chapter 4.

Our user study finds that access to an automated explanation tool helps both novice
and technical experts identify predicates that are correlated with anomalous visualization
results in less time, and more accurately, than when performing the analysis manually. We
also found that different aggregation queries require different search procedures, however
users tend to employ a single manual heuristic that can lead to inaccurate or suboptimal
results. The presence of an automated tool helps avoid these misconceptions and increases
the confidence that users have in their explanations.

135

6 AData Visualization
Management System

The previous chapters described several self-contained components that each focus on a
specific exploration task such as lineage querying or visual outlier selection, or outlier
explanation. However, integrating these components into an existing data visualization
system is challenging due to legacy architectural designs. For instance, the visualization
rendering process is typically implemented as an imperative application (as opposed to
a workflow) that is separate from data management, which makes integrating it with a
lineage-tracking system difficult.

These challenges lead us to a natural question: “if we started from a clean-slate, how
would a system that provides data management and visualization be designed?” This chapter
presents the design of a Data Visualization Management System, which unifies the execution
framework of a traditional database management system and a visualization system. Users
specify data transformations and visualizations in a declarative visualization language that
is compiled into a query execution plan that is primarily composed of relational operators
and a small number of user defined functions.

Formulating the end-to-end visualization process as a relational query plan rather than
an arbitrary imperitive program simplifies the task of tracking how input records flow
through the plan and contribute to individual elements (e.g., a point in a scatterplot) in
the visualization because we can leverage existing relational lineage tracking techniques.
In addition, a unified visualization and data processing architecture has the potential to
be both expressive via the high level visualization language, and performant by leveraging
traditional and visualization-specific optimizations to scale interactive visualizations to large
datasets.

6.1 I NTRODUCT ION
Most visualizations, including those described in this dissertation, are produced by retrieving
raw data from a database and using a specialized visualization tool to process and render it.

137

At first glance, this decoupled approach makes sense because query execution appears to be a
problem orthogonal to rendering and visualization. By connecting the two tiers with a SQL-
based communication channel, the visualization community can focus on developing more
effective visualization and interaction techniques, while advances from the data management
community can transparently improve the performance of DBMS-backed visualization
systems. In addition, certain operations, such as filtering the raw data for the subset within
a visible bounding box, can be offloaded from the visualization client to the database.

However, it is increasingly difficult for this architecure to keep up with the growth
of dataset sizes and the demand for more powerful exploration, annotation, and analysis
features [46]. For example, in order to minimize the latency of user interactions, visualization
tools will avoid roundtrips to the database by managing their own results cache and
executing data transformations directly. We have identified the following key drawbacks of
this architecture:

Provenance and Lineage Tracking
Foremost is the difficulty of tracking record-level provenance information across two different
systems – the database management system and the visualization client, which is a necessary
mechanism for many visual data analysis features, such as the explanation functionality
described in Chapter 4. Although prior work have investigated efficient provenance tracking
in database systems [44, 56, 113] and general workflow systems [8, 21, 41, 86] that decompose
computations into a sequence of logical operators than can be reasoned about, visualiza-
tion clients are typically implemented as a single imperative program whose provenance
information is difficult to reason about.

MissedOptimization Opportunities
The database is unaware of visualization-level semantics and thus unable to perform higher
level optimizations. For example, consider a dynamic slider that updates the paramater
filtering predicate (e.g., "select * from sales where day = [slider value]") of a visualization. As
the handle moves, the visualization will issue a large number of queries that only differ in the
parameter value. However, the database is not aware of this fact, and will fully recompute
each query and thus incur a significant amount of redundant computation.

Redundant Implementation
Visualization tools will often duplicate basic database operations, such as filtering and
aggregation as a way to avoid the communication cost associated with sending those

138

operations to the database and retrieving the results. In addition, visualization developers
will often re-implement common query optimizations such as r-tree [45] indexes and hash
joins in order to ensure that the visualization responds quickly to user interactions. In fact,
some tools even implement a custom database for this purpose [109].

Memory Constraints
Many visualization tools [19, 72, 111] assume that all raw data and metadata fit entirely
in memory . These assumptions make these tools difficult to scale to larger datasets that
exceed memory capacity.

6.1.1 A CLEAN -S LATE APPROACH
We propose to blend these two systems into a Data Visualization Management System
(DVMS) that makes available all database features for the purposes of visualization. Our
DVMS prototype, Ermac, embodies our two central ideas: a declarative visualization language
that describes the mapping between raw data to the geometric objects rendered in the
visualization, and a compiler that transforms a query in the language into a set of relational
queries that are executed by a single query processing engine.

The relational formulation makes it feasible for provenance systems such as the one
described in Chapter 3 to track individual tuples from an input source to the pixels rendered
on the screen. Provenance support further enables advanced visual-analytic functionalities
such as the ability to explain visualized outliers (Chapter 4).

This chapter describes Ermac’s architecture, our current visualization language and
compilation process, and the ECMAScript-based prototype implementation. The discussion
in section 6.7 describes future research directions that are made possible by a unified
visualization architecture.

6.2 OVERV I EW AND RUNN ING EXAMPLE
Ermac is designed as a data visualization engine, meaning that it can be used as a standalone
visualization system for data exploration, as the execution engine for a domain specific
language within a general programming language such as ECMAScript or Python, or as
the backend that executes specifications generated from visual direct manipulation tools
such as Lyra [100]. Ermac takes as input a declarative visualization query, and performs the
querying, data transformation, layout, and rendering operations to generate an interactive
visualization.

139

Our key insight is that a significant portion of operations performed by a visualization
system parallel those in the database system. For example, projecting data onto a coordinate
system, calculating aggregate statistics, and partitioning the dataset into multiple views
are all expressible as relational queries. Thus it should be possible to represent the end-to-
end process of data transformation, layout, and rendering in relational terms as a single
execution plan. This approach would confer the system with all of the benefits of a DBMS –
heavily optimized operator implementations, data management, a cost-based optimizer, and
secondary data-structures such as materialized views and indices.

Visualization !
Query!

Logical
Visualization Plan!

Physical
Visualization Plan!

$4M!

$7M!

Feb! Nov!Jul!

Describes
visualization!

SQL-like
queries!

Executor also
controls rendering!

Manage
interactions!

Figure 6-1: High-level architecture of a Data Visualization Management System

Figure 6-1 depicts Ermac’s the high-level architecture. Ermac takes as input the user’s
visualization query and first compiles the query into a Logical Visualization Plan, or LVP
for short (Section 6.3). The operators in the LVP describe high level steps such as mapping
statistics to geometric objects, binning the data for a histogram, or computing quartiles
for a boxplot visualization. Section 6.5 outlines how LVP is then optimized and further
compiled into a Physical Visualization Plan (PVP) composed of logical relational operators
such as join, filter, and project. The PVP finally goes through a traditional Selinger-style
query optimization [101] step to produce the final physical relational operator plan that is
executed to produce an interactive visualization. Ermac further manages the interaction
between the visualization and the execution system. The businessman depicted in the upper
right represents our model of a user that is satisfied after using the DVMS.

The following sections use the visualization in Figure 6-2 as the running example. The
figure compares the weekly (bars) and cumulative (line) amounts that the Obama and
Romney presidential campaigns spent in the 2012 US presidential election. The dataset is

140

Feb! Nov!Jul! Feb! Nov!Jul!

$4M!

$7M!

$4M!

$7M!

Obama! Romney!

Bins=
10!

Bins=
20!

Comparing Presidential Candidates!

Obama! Romney!

A
m

ou
nt
!

Day!

A! B!

C! D!

Figure 6-2: Faceted visualization of expenses table

provided by the Federal Election Commission 1. The table attributes include the candidate
name, party affiliation, purchase dates within a 10 month period (Feb. to Nov. 2012), amount
spent, and recipient. We list the table definition below:

election(candidate, party, day, amount, recipient)

6.3 LOG ICAL V I SUAL I ZAT ION PLAN
A visualization is the result of a mapping from abstract data values into the visual domain.
Ermac takes as input a visual specification that describes this mapping, and executes it on
a relational table in the data domain to generate a set of visual elements rendered as pixels
on the screen in the visual domain.

Figure 6-3 summarizes the process creating a simple visualization that compares Obama
and Romney’s expenses distributions. Each grey arrow represents a distinct processing step,
and the arrows are primarily distinguished by whether they occur in the data domain (arrows
1 and 2), visual domain (arrows 4 and 5), or between the two (arrow 3 maps data onto visual
objects).

1http://www.fec.gov/disclosurep/pnational.do

141

http://www.fec.gov/disclosurep/pnational.do

Elec%on(
Obama(

Romney(

Obama(

Romney(

Obama! Romney!

Data Domain! Visual Domain!
2!

1! 3!

4!

5!

6!

Figure 6-3: expenses Logical Visualization Plan.

For example, arrow 1 partitions the election table by candidate in order to compare
statistics between the two, and arrow 2 computes data statistics such as the total expenses per
week and the cumulative expenses by day. Arrow 3 maps data into visual attributes such as
the x and y pixel coordinates and color (blue for Obama, red for Romney) – transformations
in the subsequent operators are performed in visual domain. Arrow 4 performs positioning,
layout, and visual transformations, and arrow 5 renders the final geometric objects (marks)
in the visualization. The final orange arrow (6) represents visualization interactions, which
trigger a complete or partial execution of a new visualization query.

Ermac currently borrows heavily from prior visual languages [111, 114] whose gram-
mars decompose the above process into several orthogonal components2. For example, the
components in layered grammar used by ggplot2 [111] include data to visual aesthetic map-
pings, statistical transformations, geometric objects, scales, and statistical transformations.
The logical operator classes in the Logical Visualization Plan map almost directly onto
the components in these grammars. The rest of this section describes each of our logical
operators.

6.3.1 SYNTAX OVERV I EW
Our syntax is a nested list of clauses, where each [class: operator] clause describes the
specific operator(s) for a given operator class. For example, [geom: circle] specifies that
the geometric mapping should map attributes of the data onto properties of a circle mark,
such as position, radius and color. Top level clauses define global operator bindings, and
nested clauses are unique to a given layer (described below). Clauses may only be nested
within layer, which cannot be nested within itself:

[class: operator]* // top level clause

2We encourage interested readers to read those publications for an in-depth analysis of graphical grammars.

142

Class Description
data The input dataset(s).
aesmap How attributes in the datasets are mapped to visual aesthetic attributes.
stat Statistical transformations to apply to dataset.
geom Which mark type to represent the visual aesthetics.
pos Custom transformations to apply to the mark objects.
facet How the data should be faceted along the x and y dimensions.
scale Custom mapping from the data to visual domain.
layer Add a new layer to the visualization

Table 6-4: Summary of classes.

[layer: // layer clause

[class: operator]* // nested clause

]*

An operator is defined by its name and an optional sequence of key-value parameter
values. For example, circle defines the circle operator that uses default values for all of
its properties, whereas circle(radius:10) defines the circle operator and sets the radius
to 10 units. class clauses that perform data transformations, such as stat, also accept a
sequence of operators as input. As a shorthand, the operator name can be dropped for
classes that only support a single operator, such as the aesmap and facet classes described
in the next subsection.

operator = name | o | ’[’ o, operator ’]’

o = name([parameter: value]*) |

[parameter: value]*

6.3.2 OPERATOR classES
Ermac supports eight classes of operators, summarized in Table 6-4. The following subsection
describes the function of each operator class and lists examples of its usage.

data

The data class specifies the input dataset for the visualization. Users can specify a relation
in a database, a database query, a csv text file, or an array of attribute-value hashtables
in the embedded programming environment. The following code snippet show examples of
connecting to a database query and a web-based csv file.

143

data: db(url: ’postgres://...’, query: ’SELECT ... ’)

data: ’http://.../data.csv’

aesmap

The aesmap class specifies how attributes in the input dataset (e.g., amount, week) are
mapped to visual aesthetics such as the x/y pixel coordinates and color. The user specifies a
list of data attribute, visual attribute pairs.

facet

The facet class enables Ermac to render small-multiples [39] views in a two-dimensional
grid. For example, Figure 6-2 partitions the election dataset by candidate and renders each
partition using the same visual mapping side-by-side along the x axis. This class corresponds
to arrow 1 in Figure 6-3.

stat

The stat class specifies the sequence of statistical transformations to run on the input
dataset. For example, our current implementation supports arbitrary group-by aggregation,
local regression (loess) smoothing, sorting, cumulative distributions, and box plots. This
class corresponds to arrow 2 in Figure 6-3.

scale

The scale class defines the bi-directional function that maps values in the data domain to
values in the visual domain. By default, Ermac uses a linear mapping for each attribute.
For example, let the attribute amount ∈ [0 − 100, 000] be mapped to a position between
[5 − 100] pixels along the y-coordinate axis. The default linear transformation would be
y = amount/100000 ∗ 95 + 5. Alternative mapping functions include log transformations, or
geographic coordinate projections.

geom

The geom class specifies which mark type should be used to render the input data and the
algorithms for define the default layout positioning. For example, our current implementation
supports circles (for scatter plots), lines, paths, rectangles (for bar charts or 2D-bins), text,
and box-plots. This class corresponds to arrow 4 in Figure 6-3.

144

pos

The positioning class pos is analogous to stat, however it specifies transformations applied
to marks in the visual domain (arrow 4). Re-positioning operations can vary from simple
shifting transformations to offset text labels, to stacking curves on top of each other to
create a stacked area chart:

pos: shift(dx:10, dy:30)

pos: stack

layer

layer is a special class that adds a new rendering layer to the visualization. Each layer
can define custom marks, statistical transformations, and other class clauses that override
the global defaults. Layers are rendered in their declaration order, so that the last layer is
rendered on the top.

6.3.3 RUNN ING EXAMPLE

Algorithm 3 Specification to visualize 2012 election data.
1: data: db(table: ’election’, url: ...)
2: aesmap: x:day,y:amount
3: layer:
4: stat: [sort(on:x), cumulative]
5: geom: line
6: layer:
7: stat: bin(bins:10)
8: geom: rect
9: //stat: bin(bins:VAR1)
10: facet:
11: facetx: candidate
12: facety: [VAR1 ← (10,20)]

Lines 1-5 of Listing ?? are sufficient to render a line chart that shows total cumulative
spending over time during the 2012 US presidential election. The data clause specifies the
input table (which may also be a SQL SELECT query), the aesmap clause specifies the
aesthetic mapping from the day and amount attributes to the x and y positional encodings.
The layer clause specifies that the statistical transformation should first sort the data by x
(day) and then compute the cumulative sum over y (amount) for each day, and that the
should be rendered using the line mark.

145

Lines 6-8 render a new layer that contains a histogram of the total expenditures partitioned
by day into ten buckets. The bin operator partitions the x attribute into ten equi-width
bins (i.e., months) and sums the y values (Figure 6-2.A).

It makes sense to compare the purchasing habits of the two candidates side-by-side
(Figures 6-2.A,B). The facet clause (Lines 10-11) specifies that the data is partitioned by
candidate name; the visualization draws a separate view, or subfigure, for each partition;
and the views are rendered as a single row along the x (facetx) dimension.

It is often useful to compare visualizations generated from different operators or operator
parameters (e.g., compare different sampling and aggregation techniques). Ermac’s novel
parameter-based faceting uses special dummy operators and parameters that are replaced
at compile time. For example, Line 12 further divides the visualization into a 2-by-2 grid
(Figure 6-2.A-D), where each row varies the VAR1 operator in the specification. Thus, replacing
Line 7 with 9 changes the bins parameter into a dummy variable that will be replaced with
a binning value of either 10 (monthly) or 20 (bi-weekly), as dictated by Line 12.

6.4 DATA AND EXECUT ION MODEL
Ermac’s data model is nearly identical to the relational model, however we support data
types that are references to rendered visual elements (e.g., SVG element). This allows the
data model to encapsulate the full transformation of input data records to records of visual
elements that are ultimately rendered3.

For example, to produce the example’s histogram, Ermac first aggregates the expenses
into 10 bins, maps each bin (month) to an abstract rectangle record, and finally transforms
the rectangle records to physical rectangle objects drawn on the screen. When the user
specifies a faceting clause or multiple layers, Ermac also augments the data relation with
attributes (e.g., facetx, facety, layerid) to track the view and layer where each record
should be rendered. For example, the schema of the initial data relation for the running
example would be:

election(candidate, party, day, amount, recipient, facetx, layerid)

Where the value of facetx is the same as the value of the candidate attribute. There are two
values for layerid, one for each of the two layers in the specification.

Ermac additionally manages a scales relation that tracks the mapping from the domains
of data attributes (e.g., day, amount) to the ranges of their corresponding perceptual

3The physical rendering is modeled as UDFs that make OpenGL/WebGL/HTML DOM calls

146

encodings (e.g., x, y pixel coordinates). For instance, our example visualization linearly
maps the day attribute’s domain ([Feb, Nov]) to pixel coordinates ([0, 100]) along the x axis.
These records are maintained for each aesthetic variable in every facet and layer.

Representing all visualization state as relational tables lets Ermac compile each logical
operator into one or more relational algebra queries that take the data relation and scales
relation as input and update one of the two relations. For example, Ermac reads the
data relation to update the attribute domains in the scales relation, whereas data-space
transformations (e.g., bin) read the x (day) attribute’s domain from the scales relation to
compute bin sizes.

6.5 PHYS ICAL V I SUAL I ZAT ION PLAN
In this section, we describe how each of the logical visualization operators are compiled into
SQL queries that compose the Physical Visualization Plan.

facet

When the facet operator is compiled, the downstream operators may also need to be
modified to deal with dummy variables. The facetx: candidate clause (Line 11) partitions
the data by candidate name and creates a unique facet attribute value for each partition.
This is represented as a simple projection query:

SELECT *, candidate as facetx from data

The parameter-based faceting (Line 12) is compiled into a cross product with a temporary
table, facets(facety), that contains a record for each parameter value (e.g., 10 and 20):

SELECT data.*, facety.facety FROM data OUTER JOIN facets

Furthermore, facet replicates the downstream LVP for each facety value 10 and 20.
If the facetx clause were also a parameter list of size M , the downstream plan would be
replicated 2M times – once for each pair of facetx, facety values.

aesmap

The aesmap operator can be directly compiled into a projection query. For example, the
clause on Line 2 can be compiled into:

SELECT day as x, amount as y FROM data

147

stat and pos
Although statistical and positioning transformations can potentially be arbitrarily complex,
the majority of transformations can be modeled as one or more aggregation queries over the
dataset. For example, computing the histogram on Line 7 can be described by the following
query:

SELECT x, sum(y) as y FROM data

On the other hand, Line 4 computes a cumulative sum, which is difficult to express using
traditional relational operators. Ermac currently compiles these operators into a user defined
table function:

SELECT * FROM cumulative(data)

scales

Scale transformations are directly mapped into a projection query. Let scalex and scaley be
the scaling functions for the x and y aesthetic attributes. Then the scaling query is simply:

SELECT scalex(x) as x, scaley(y) as y FROM data

geom

Each geom operator defines a Most geom operators can be modeled as a projection query.
For example, Line 8 can be represented as a query that “fills in” the data relation schema a
line mark’s necessary attributes:

SELECT x, y, ’black’ as color, ’solid’ as dashtype FROM data

layer

Each layer can be considered a separate visualization that shares the same rendering
viewport, faceting, and layout as the other layers. Ermac models each layer as a separate
logical visualization plan that all share a common dummy source operator. When there
is more than one layer, the compiler first replaces the data relation with the result of an
outer join between the data relation and a temporary layers(layerid) table containing
one record per layer:

SELECT data.*, layers.layerid FROM data OUTER JOIN layers

148

This ensures that the execution plan operates over a single input table, and the operators in
each layer filter the data relation for the records with its corresponding layer id.

In order to ensure that visualization components, such as the axis scales, are consistent
across the layers, the compiler injects synchronization barriers for operations that span
across the layers. For example, Ermac learns the domains of the scale mapping functions
by computing bounds of each attribute across all of the layers and facets:

SELECT min(x) as xmin, max(x) as maxx,

min(y) as miny, max(y) as maxy FROM data

Rendering Operators
In addition to the above logical operators, Ermac also supports two types of rendering-specific
logical operators. The first is for computing the layout of the visualization (e.g., position
and bounding boxes for axes, headers, and plot), which is non-trivial to express in pure SQL.
We represent this operator as a user defined table function over the scales relation:

SELECT * FROM layout(scalestable)

The second type are the operators for actually rendering mark objects to the viewport.
Figure 6-5 depicts the rendered result after each of the three rendering operators. The
first (Figure 6-5a) renders visualization level components that are independent of the data
relation, such as the headers, axis titles and the main plotting area. The second (Figure ??)
renders non-mark components that are derived from the data relation, such as the plotting
area for each facet and layer, as well as facet headers and axes. The final rendering operator
iterates through the data relation and renders each mark object into its corresponding
plotting area.

The first two rendering operators are implemented as user defined table functions, whereas
the latter is simply a projection using a user defined rendering function:

SELECT render_svg(*) FROM data

6.5.1 D I SCUSS ION
Although we have developed compilation strategies for all major logical operators, many
of the relational queries rely on expensive cross-products or nested sub-queries. Many of
these operations are unavoidable, regardless of whether Ermac or another system is creating
the visualization. However, by expressing these expensive operations declaratively, we can

149

Comparing Presidential Candidates!

A
m

ou
nt
!

Day!

Main%Plot%Area%

(a) First Rendering Pass

Data$Area$

Data$Area$ Data$Area$

Data$Area$

Feb! Nov!Jul! Feb! Nov!Jul!

$4M!

$7M!

$4M!

$7M!

Obama! Romney!

Bins=
10!

Bins=
20!

Comparing Presidential Candidates!

Obama! Romney!

A
m

ou
nt
!

Day!

(b) Second Rendering Pass

Figure 6-5: Visualization after each rendering operator

use existing optimization techniques and develop new visualization-informed techniques to
improve performance.

For instance, Ermac knows that queries downstream from parameter-based faceting will
not update the data relation so it can avoid redundant materialization when executing
the cross-product. Identifying further optimizations for individual and across multiple LVP
operators poses an interesting research challenge.

6.6 IMPLEMENTAT ION
Ermac is currently implemented as a CoffeeScript/ECMAScript workflow execution engine
that takes as input a JSON-encoded visualization specification, renders the visualization as a
Scalable Vector Graphics (SVG) object, and returns an ECMAScript object that contains the
SVG, a table containing the references and attributes of the visualized DOM elements in the
visualization, and a table containing the scales and layout metadata. Visualization queries
are compiled into a directed-acyclic-graph of the logical operators described in Section 6.3.
Rather than compiling the logical operators into SQL queries, Ermac directly transforms
them into a physical relational operator graph. The physical operators can run in the browser
as well as on a Node.js server, and the executor supports split execution where different
subsets of the workflow can be executed on either location. Figure 6-6 shows a gallery of
visualizations that Ermac can render from a randomly generate dataset. These examples
illustrate different types of faceting, geometric objects, statistical aggregations, and layering
that the system can support.

150

Figure 6-6: Gallery of Ermac generated visualizations.

6.6.1 OPERATOR IMPLEMENTAT IONS
All Ermac operators are subclassed from a generic Node operator. The operator takes as input
the pair of data relation and scales relation, and exposes the following simple interface:

class Node
constructor: (@params={}) ->

@private
Private method that prepares inputs before calling compute()
run: () ->

@public
Subclasses override this function
compute: (datatable, scalestable, params, callback) ->

Both physical and logical operators override the compute() method, and the private

151

run() method validates, prepares and partitions the input data before calling compute()
one or more times. Ermac provides generic implementations of each logical operator that
shields the developer from dealing with validation and preparation. Custom logical operators
simply specify a minimum input schema that the data relation must adhere to (e.g., x, and
y attributes must be present in order to render a point) and an optional list of attributes as
the partitioning key. run() partitions the pair of data relation and scales relation; each
compute() call takes as input the pair of partitions with the same key value.

Partitioning is necessary for correctness – the faceting clause in the specification imposes
a grid-like structure on the output visualization. Each operator may operate on partitions of
the data relation that pretain to a given row, column or individual sub-plot in the grid, or
on the full data relation. For instance, the x and y axes are typically rendered consistently
across the sub-plots, so their domain information should be computed across all of the data.
In contrast, statistical summaries such as cumulative distributions are computed for each
sub-plot in isolation.

Within the compute() method, developers interact with Ermac tables using a method
chaining syntax similar to the syntax in DryadLinq [120] and Spark [122]. These calls build
an internal query plan that Ermac executes when the operator accesses data in the table,
or at operator boundaries. For example, the following CoffeeScript code snippet filters the
data relation where x > 10 and joins the result with the scales relation:

datatable
.filter((tuple, idx) -> tuple.get(’x’) > 10)
.join(scalestable, [’facetx’, ’facety’])

We have implemented projection, filter, cross-product, outer-join, limit, offset, orderby,
union, and partition operations. In addition, Ermac can internally represent tables in
columnar and row formats, as well as partitioned on a set of table attributes. The latter
representation is beneficial because nearly every operator first partitions the data relation
by a combination of the facetx, facety, and layer attributes.

6.6.2 USAGE
The following code snippet creates the visualization in Figure 6-2. With the exception of
string quotes and formatting differences, the specification is nearly identical to the syntax
presented in Section 6.3. The ermac() call returns a compiled visualization object and the
render() statement simply renders the visualization within the specified DOM element.

152

plot = ermac(

data: election

aes:

x: ’day’

y: ’amount’

layer:

stat: [{ type: ’sort’, on: ’x’ }, ’cumulative’]

geom: ’line’

layer:

stat: { type: ’bin’, bins: ’DUMMY’ }

geom: ’rect’

facet:

x: ’candidate’

y: { type: ’DUMMY’, vals: [10, 20] }

)

el = null; // initialize to a DOM element

plot.render(el)

facet-labeler:1

scales-prestats:17

wf

Union:t:48

input

Union:t:85

output

input

scalesfilter-0:27

wf

Union:t:132

output

Union:t:55

table

Union:t:89

table

facet_train:2

pre-scaleapply-0:33

wf

Union:t:259

input output

input output scalesapply-0:34

wf

Union:t:262

table

Union:t:321

table

Partition:t:326

table

Array:t:329

table

facet-render:5

render-panes:8

wf

Union:t:453

input output

input

pre-render-0:40

wf

Union:t:635

output

Union:t:501

table

Union:t:508

table

Partition:t:513

table

Array:t:516

table

facet-layout1:6

wf

input output

input output render-Point:12

wf

Union:t:747

table

tablesource:9

layer-labeler:25

wf

RowTable:t:3

input

RowTable:t:1

output

input

map-shorthand-0:15

wf

Project:t:20

output

table

Project:t:795

table

Project:t:8

table

Project:t:783

table

point-reparam:0:11

post-reparam-0:36

wf

Union:t:340

inputoutput

inputoutput scales-pixel:20

wf

Union:t:347

table

input

Cache:t:776

output

detectscales:14

input output

scales-schema-0:26

wf

wf

inputoutput

output

wf

input

Partition:t:23

table

Array:t:26

table

coord-0:16

input output

post-coord-0:39

wf

input output

core-render:22

wf

input output

post-scalefilter-0-0:28

wf

Union:t:181

table

scales-postgeommap:18

input

post-geommaptrain-0:30

wf

Union:t:192

output

input output

post-geommaptrain-0:31

wf

Union:t:232

table

output

input

post-pixeltrain-0:37

wf

input output

pre-coord-0:38

wf

core-layout:21

output

wfinput

wf

input output

graphic-setupenv:23

inputoutput

multicast-24:24

wf

wf

input output

input output

pre-stat-0-0:29

wf

input output

wf

input output

scales-validate:32

wf

input output

wf

input

output

post-scaleapply-0:35

wf

wf

input output

input output

wf

start-41:41

output

wf

facet-labeler:42

scales-prestats:60

wf

Union:t:823

input

Union:t:860

output

input

Union:t:891

output

scalesfilter-0:70

wf

Union:t:830

table

Union:t:864

table

facet_train:43

pre-scaleapply-0:76

wf

Union:t:978

inputoutput

inputoutput scalesapply-0:77

wf

Union:t:981

table

Union:t:1016

table

Partition:t:1021

table

Array:t:1024

table

facet-render:46

render-panes:49

wf

Union:t:1062

input output

input

pre-render-0:83

wf

Union:t:1130

output

Union:t:1068

table

Union:t:1075

table

Partition:t:1080

table

Array:t:1083

table

facet-layout1:47

wf

input output

input outputrender-Rect:53

wf

Union:t:1146

table

tablesource:50

output layer-labeler:68

wf

RowTable:t:778

input

input

map-shorthand-0:58

wf

output

rect-reparam:52

post-reparam-0:79

wf

Union:t:1035

input output

input output scales-pixel:63

wf

Union:t:1046

table

input

Cache:t:1151

output

stat-bin-0:54

scales-postgeommap:61

wf

input output

input

post-geommaptrain-0:73

wf

Union:t:959

output

Union:t:948

table

stat-bin-0-quantize:55

wf

inputoutput

detectscales:57

input output

scales-schema-0:69

wf

wf

input output

output

wf

input

Partition:t:798

table Array:t:801

table

coord-0:59

inputoutput

post-coord-0:82

wf

input output

core-render:65

wf

input output

post-scalefilter-0-0:71

wf

input output

post-geommaptrain-0:74

wf

Union:t:967

table

output

input

post-pixeltrain-0:80

wf

input output

pre-coord-0:81

wf

core-layout:64

output

wfinput

wf

inputoutput

graphic-setupenv:66

inputoutput

multicast-67:67

wf

wf

inputoutput

input output

pre-stat-0-0:72

wf

input output

wf

input output

scales-validate:75

wf

input output

wf

input

output

post-scaleapply-0:78

wf

wf

input output

inputoutput

wf

start-84:84

output

wf

Project:t:4

Project:t:5

table

Project:t:6

table

RowTable:t:2

table

Project:t:7

table

Partition:t:11

table

Array:t:14

table

HashJoin:t:12

table

Cross:t:18

table

Distinct:t:9

table

Partition:t:10

table

Array:t:13

table

Distinct:t:784

table

tabletable

Union:t:19

table

Project:t:21

table

Project:t:22

table

HashJoin:t:25

table

Project:t:35

table

Partition:t:24

table

Array:t:27

table

table

Partition:t:39

table

Array:t:42

table

Cache:t:34

table

table

Project:t:36

table

Cache:t:51

table

HashJoin:t:40

table

Cross:t:46

table

table

Union:t:54

table

Union:t:56

table

Distinct:t:37

table

tableProject:t:58

table

Partition:t:38

table

Array:t:41

table

tabletable

Union:t:47

table

Project:t:49

table

table

Cache:t:52

table

table

Partition:t:63

table

Array:t:66

table

Union:t:76

table

Union:t:75

table

Project:t:60

table

Cache:t:72

table

HashJoin:t:64

table

Cross:t:70

table

Union:t:78

table

Cache:t:53

table

table

RowTable:t:50

table

Array:t:57

table

Project:t:59

table table

Cache:t:74

table

Union:t:77

table

Distinct:t:61

table

table

table

Union:t:83

table

table

Partition:t:92

table

Array:t:95

table

Array:t:96

table

Array:t:97

table

Array:t:98

table

Array:t:99

table

Array:t:100

table

Array:t:101

table

Array:t:102

table

Array:t:103

table

Union:t:122

table

tabletable Partition:t:79

table

Array:t:80

table

Partition:t:62

table

Array:t:65

table

tabletable

Union:t:71

table

Cache:t:73

table

table

Union:t:84

table

Union:t:86

table

Union:t:90

table

Partition:t:93

table

Array:t:104

table

Array:t:105

table

Array:t:106

table

Array:t:107

table

Array:t:108

table

Array:t:109

table

Array:t:110

table

Array:t:111

table

Array:t:112

table

Union:t:123

table

table

HashJoin:t:94

table

table

Union:t:124

table

Union:t:130

table Union:t:134

table

table

table

tableUnion:t:136

table

table

table

tableUnion:t:138

table

table

table

table Union:t:140

table

table

table

table Union:t:142

table

table

table

table Union:t:144

table

table

table

tableUnion:t:146

table

table

table

tableUnion:t:148

table

table

table

tableUnion:t:150

table

table

table

table

table

Union:t:125

table

Union:t:131

table

Union:t:133

tableUnion:t:135

table tabletable

tableUnion:t:137

table tabletable

table Union:t:139

tabletabletable

table Union:t:141

tabletabletable

tableUnion:t:143

table tabletable

tableUnion:t:145

table tabletable

tableUnion:t:147

table tabletable

table Union:t:149

table tabletable

table Union:t:151

table

table

tabletable

Cache:t:82

tabletable

RowTable:t:81

table

Cache:t:88

tabletable

RowTable:t:87

table

Array:t:91

tabletable

Project:t:116

table

table

Filter:t:152

table

Filter:t:153

table

Filter:t:154

table

Filter:t:155

table

Filter:t:156

table

Filter:t:157

table

Filter:t:158

table

Filter:t:159

table

Filter:t:160

table

table

Union:t:182

table

table

Cache:t:163

table table

Cache:t:165

table table

Cache:t:167

tabletable

Cache:t:169

tabletable

Cache:t:171

table table

Cache:t:173

table table

Cache:t:175

table table

Cache:t:177

table table

Cache:t:179

table

Union:t:117

table

Cache:t:121

table

table

table Partition:t:126

table

Array:t:127

table

tabletable

Cache:t:129

tabletable

RowTable:t:128

table

table

Cache:t:162

table

table

Union:t:185

table

Union:t:191

table

Union:t:193

tableUnion:t:195

table

table

Cache:t:164

table

tabletabletable

tableUnion:t:197

table

table

Cache:t:166

table

tabletabletable

table Union:t:199

table

table

Cache:t:168

table

tabletabletable

table Union:t:201

table

table

Cache:t:170

table

tabletabletable

tableUnion:t:203

table

table

Cache:t:172

table

tabletabletable

tableUnion:t:205

table

table

Cache:t:174

table

tabletabletable

tableUnion:t:207

table

table

Cache:t:176

table

tabletabletable

table Union:t:209

table

table

Cache:t:178

table

tabletabletable

table Union:t:211

table

table

table

Union:t:184

table

Union:t:190

table

Union:t:194

table

table

tabletabletable

Union:t:196

table

table

tabletabletable

Union:t:198

table

table

tabletabletable

Union:t:200

table

table

tabletabletable

Union:t:202

table

table

tabletabletable

Union:t:204

table

table

tabletabletable

Union:t:206

table

table

tabletabletable

Union:t:208

table

table

tabletabletable

Union:t:210

table

table table

Cache:t:213

tabletable

Union:t:233

table

table

Cache:t:214

table table

Cache:t:215

tabletable

Cache:t:216

table table

Cache:t:217

tabletable

Cache:t:218

table table

Cache:t:219

tabletable

Cache:t:220

table table

Cache:t:221

tabletable

Cache:t:222

table table

Cache:t:223

tabletable

Cache:t:224

table table

Cache:t:225

tabletable

Cache:t:226

table table

Cache:t:227

tabletable

Cache:t:228

table table

Cache:t:229

tabletable

Cache:t:230

table

Cache:t:180

tabletable

RowTable:t:161

table

Array:t:183

tabletable Partition:t:186

table

Array:t:187

table

tabletable

Cache:t:189

tabletable

RowTable:t:188

table

table

table

Union:t:257

tabletable

Project:t:235

table

table

table tabletable

Project:t:236

table

table

table tabletable

Project:t:237

table

table

table tabletable

Project:t:238

table

table

table tabletable

Project:t:239

table

table

table tabletable

Project:t:240

table

table

table tabletable

Project:t:241

table

table

table tabletable

Project:t:242

table

table

table tabletable

Project:t:243

table

table

Cache:t:247

table

Union:t:258

table table

Cache:t:248

table table

Cache:t:249

tabletable

Cache:t:250

tabletable

Cache:t:251

table table

Cache:t:252

table table

Cache:t:253

table table

Cache:t:254

table table

Cache:t:255

table

Cache:t:231

tabletable

RowTable:t:212

table

Array:t:234

Partition:t:244

table

Array:t:245

table

table

table

Union:t:260

table tabletable table tabletable table table table table

Project:t:261

table

Cache:t:256

table

table

RowTable:t:246

table

Project:t:264

table

HashJoin:t:328

table

Limit:t:339

table

Project:t:338

table

Union:t:263

table

Partition:t:267

table

Array:t:278

table

Array:t:279

table

Array:t:280

table

Array:t:281

table

Array:t:282

table

Array:t:283

table

Array:t:284

table

Array:t:285

table

Array:t:286

table

Distinct:t:265

table

HashJoin:t:268

table

Cross:t:290

table

Cross:t:291

table

Cross:t:292

table

Cross:t:293

table

Cross:t:294

table

Cross:t:295

table

Cross:t:296

table

Cross:t:297

table

Cross:t:298

table

Partition:t:266

table

Array:t:269

table

Array:t:270

table

Array:t:271

table

Array:t:272

table

Array:t:273

table

Array:t:274

table

Array:t:275

table

Array:t:276

table

Array:t:277

table

table tabletable table tabletable table tabletable table

Union:t:299

tabletable table tabletable table tabletable table

Partition:t:304

table

Array:t:307

table

HashJoin:t:305

table

Cross:t:311

table

Project:t:301

Distinct:t:302

table

Partition:t:303

table

Array:t:306

table

RowTable:t:300

table

table table

Union:t:312

table

Project:t:313

table

Once:t:314

table

Array:t:316

table

Partition:t:315

table

Array:t:317

table

Limit:t:319

table

Project:t:318

table

Project:t:320

table

Union:t:322

table

Partition:t:323

table

Array:t:324

table

Project:t:325

table

Partition:t:327

table

Array:t:330

tabletable

Union:t:341

table

Union:t:348

tablePartition:t:351

table

Array:t:362

table

Array:t:363

table

Array:t:364

table

Array:t:365

table

Array:t:366

table

Array:t:367

table

Array:t:368

table

Array:t:369

table

Array:t:370

table

Union:t:381

table

Cache:t:337

table

table

Project:t:342

table

table

HashJoin:t:352

table

Union:t:383

table

Union:t:385

table table

Union:t:387

table table

Union:t:389

tabletable

Union:t:391

tabletable

Union:t:393

table table

Union:t:395

tabletable

Union:t:397

tabletable

Union:t:399

tabletable

Union:t:401

table

table

table table

Project:t:343

table

tableCache:t:345

table

tablePartition:t:350

table

Array:t:353

table

Array:t:354

table

Array:t:355

table

Array:t:356

table

Array:t:357

table

Array:t:358

table

Array:t:359

table

Array:t:360

table

Array:t:361

table

Union:t:380

table

table

Union:t:382

table

Union:t:384

table

table

Union:t:386

table

table

Union:t:388

table

table

Union:t:390

table

table

Union:t:392

table

table

Union:t:394

table

table

Union:t:396

table

table

Union:t:398

table

table

Union:t:400

table table

Cache:t:346

tabletable

RowTable:t:344

table

Array:t:349

tabletable

Project:t:374

table

Project:t:402

table

Project:t:404

table

Project:t:406

table

Project:t:408

table

Project:t:410

table

Project:t:412

table

Project:t:414

table

Project:t:416

table

Project:t:418

table

Cache:t:425

table

Union:t:452

table table

Cache:t:428

table table

Cache:t:431

tabletable

Cache:t:434

tabletable

Cache:t:437

table table

Cache:t:440

tabletable

Cache:t:443

tabletable

Cache:t:446

tabletable

Cache:t:449

table

Union:t:375

table

Cache:t:379

table

table table

Partition:t:420

table

Array:t:421

table

table

Union:t:451

table

Once:t:403

table

Array:t:423

table

Union:t:454

table Union:t:456

table

table

Once:t:405

table

Array:t:426

table

tableUnion:t:458

table

Once:t:407

table

Array:t:429

table

table Union:t:460

table

Once:t:409

table

Array:t:432

table

tableUnion:t:462

table

Once:t:411

table

Array:t:435

table

table Union:t:464

table

Once:t:413

table

Array:t:438

table

table Union:t:466

table

Once:t:415

table

Array:t:441

table

tableUnion:t:468

table

Once:t:417

table

Array:t:444

table

table Union:t:470

table

Once:t:419

table

Array:t:447

table

table Union:t:472

table

Cache:t:424

tabletable

table

Union:t:455

table

table

table

Cache:t:427

table

table

Union:t:457

table

table

Cache:t:430

table

table

Union:t:459

table

table

Cache:t:433

table

table

Union:t:461

table

table

Cache:t:436

table

table

Union:t:463

table

table

Cache:t:439

table

table

Union:t:465

table

table

Cache:t:442

table

table

Union:t:467

table

table

Cache:t:445

table

table

Union:t:469

table

table

Cache:t:448

table

table

Union:t:471

table

Project:t:473

table

Project:t:500

table

table

Project:t:475

table table

Project:t:477

table table

Project:t:479

table table

Project:t:481

table table

Project:t:483

table table

Project:t:485

table table

Project:t:487

table table

Project:t:489

table table

Cache:t:450

table

table

RowTable:t:422

table

HashJoin:t:515

table

Union:t:527

table

Union:t:529

table

Partition:t:532

table

Array:t:535

table

Array:t:536

table

Array:t:537

table

Array:t:538

table

Array:t:539

table

Array:t:540

table

Array:t:541

table

Array:t:542

table

Array:t:543

table

Union:t:562

table

Union:t:502

table

Once:t:474

table

Array:t:491

table

Once:t:476

table

Array:t:492

table

Once:t:478

table

Array:t:493

table

Once:t:480

table

Array:t:494

table

Once:t:482

table

Array:t:495

table

Once:t:484

table

Array:t:496

table

Once:t:486

table

Array:t:497

table

Once:t:488

table

Array:t:498

table

Once:t:490

table

Array:t:499

table

tabletable tabletable tabletable table table table

Project:t:503

table

Partition:t:504

table

Array:t:505

table

Project:t:506

table

Project:t:507

table

Union:t:509

table

Partition:t:510

table

Array:t:511

table

Project:t:512

table

Partition:t:514

table

Array:t:517

table

table

Union:t:528

table

Union:t:530

table

Partition:t:533

table

Array:t:544

table

Array:t:545

table

Array:t:546

table

Array:t:547

table

Array:t:548

table

Array:t:549

table

Array:t:550

table

Array:t:551

table

Array:t:552

table

Union:t:563

table

Cache:t:524

table

table

HashJoin:t:534

table

Union:t:564

table

Union:t:566

table

Union:t:584

table table

Union:t:568

table

Union:t:586

table table

Union:t:570

table

Union:t:588

tabletable

Union:t:572

table

Union:t:590

tabletable

Union:t:574

table

Union:t:592

table table

Union:t:576

table

Union:t:594

table table

Union:t:578

table

Union:t:596

table table

Union:t:580

table

Union:t:598

tabletable

Union:t:582

table

Union:t:600

table

table table

table

Union:t:565

table Union:t:567

table

Union:t:585

table

tableUnion:t:569

table

Union:t:587

table

tableUnion:t:571

table

Union:t:589

table

table Union:t:573

table

Union:t:591

table

tableUnion:t:575

table

Union:t:593

table

tableUnion:t:577

table

Union:t:595

table

tableUnion:t:579

table

Union:t:597

table

table Union:t:581

table

Union:t:599

table

table Union:t:583

table

Union:t:601

table

table

table table

Cache:t:526

table table

RowTable:t:525

table

Array:t:531

table table

Project:t:556

table

Cache:t:623

table

Union:t:633

table table

Cache:t:624

tabletable

Cache:t:625

tabletable

Cache:t:626

tabletable

Cache:t:627

table table

Cache:t:628

table table

Cache:t:629

tabletable

Cache:t:630

tabletable

Cache:t:631

table

Project:t:602

table

Project:t:604

table

Project:t:606

table

Project:t:608

table

Project:t:610

table

Project:t:612

table

Project:t:614

table

Project:t:616

table

Project:t:618

table

Union:t:557

table

Cache:t:561

table

table table

Partition:t:620

table

Array:t:621

table

table

Union:t:634

table

table

Partition:t:637

table

Array:t:640

table

table

Cache:t:603

table

table

Partition:t:646

table

Array:t:649

table

Cache:t:605

table

table

Partition:t:655

table

Array:t:658

table

Cache:t:607

table

table

Partition:t:664

table

Array:t:667

table

Cache:t:609

table

table

Partition:t:673

table

Array:t:676

table

Cache:t:611

table

table

Partition:t:682

table

Array:t:685

table

Cache:t:613

table

table

Partition:t:691

table

Array:t:694

table

Cache:t:615

table

table

Partition:t:700

table

Array:t:703

table

Cache:t:617

table

table

Partition:t:709

table

Array:t:712

table

Cache:t:619

table

table

Union:t:636

tablePartition:t:638

table

Array:t:641

table

table

Union:t:748

table

HashJoin:t:639

table

table

table

tablePartition:t:647

table

Array:t:650

table

HashJoin:t:648

table

table

table

tablePartition:t:656

table

Array:t:659

table

HashJoin:t:657

table

table

table

tablePartition:t:665

table

Array:t:668

table

HashJoin:t:666

table

table

table

tablePartition:t:674

table

Array:t:677

table HashJoin:t:675

table

table

table

tablePartition:t:683

table

Array:t:686

table

HashJoin:t:684

table

table

table

tablePartition:t:692

table

Array:t:695

table

HashJoin:t:693

table

table

table

tablePartition:t:701

table

Array:t:704

table

HashJoin:t:702

table

table

table

tablePartition:t:710

table

Array:t:713

tableHashJoin:t:711

table

table

table

table

Project:t:749

table

table

table

Project:t:752

table

table

table

Project:t:755

table

table

table

Project:t:758

table

table

table

Project:t:761

table

table

table

Project:t:764

table

table

table

Project:t:767

table

table

table

Project:t:770

table

table

table

Project:t:773

table

Cache:t:632

table

table

RowTable:t:622

table

table

Project:t:645

table

Cache:t:750

table

Union:t:718

table

Cache:t:746

table

Project:t:654

table

Cache:t:753

table table

Project:t:663

table

Cache:t:756

table table

Project:t:672

table

Cache:t:759

table table

Project:t:681

table

Cache:t:762

table table

Project:t:690

table

Cache:t:765

table table

Project:t:699

table

Cache:t:768

table table

Project:t:708

table

Cache:t:771

table table

Project:t:717

table

Cache:t:774

table table

table table

Project:t:751

table

table

Project:t:754

table

table

Project:t:757

table

table

Project:t:760

table

table

Project:t:763

table

table

Project:t:766

table

table

Project:t:769

table

table

Project:t:772

table

table

Project:t:775

table

table

Project:t:779

Project:t:780

table

Project:t:781

table

RowTable:t:777

table

Project:t:782

table

Partition:t:786

table

Array:t:789

table

HashJoin:t:787

table

Cross:t:793

table

Partition:t:785

table

Array:t:788

table

table table

Union:t:794

table

Project:t:796

table

Project:t:797

table

HashJoin:t:800

table

Project:t:810

table

Partition:t:799

table

Array:t:802

table

table

Partition:t:814

table

Array:t:817

table

Cache:t:809

table

table

Project:t:811

table

Cache:t:826

table

HashJoin:t:815

table

Cross:t:821

table

table

Union:t:829

table

Union:t:831

table

Distinct:t:812

table

table Project:t:833

table

Partition:t:813

table

Array:t:816

table

table table

Union:t:822

table

Project:t:824

table

table

Cache:t:827

table

table

Partition:t:838

table

Array:t:841

table

Union:t:851

table

Union:t:850

table

Project:t:835

table

Cache:t:847

table

HashJoin:t:839

table

Cross:t:845

table

Union:t:853

table

Cache:t:828

table

table

RowTable:t:825

table

Array:t:832

table

Project:t:834

table table

Cache:t:849

table

Union:t:852

table

Distinct:t:836

table

table

table

Union:t:858

table

table

Partition:t:867

table

Array:t:870

table

Union:t:881

table

table

table Partition:t:854

table

Array:t:855

table

Partition:t:837

table

Array:t:840

table

tabletable

Union:t:846

table

Cache:t:848

table

table

Union:t:859

table

Union:t:861

table

Union:t:865

table

Partition:t:868

table

Array:t:871

table

Union:t:882

table

table

HashJoin:t:869

table

table

Union:t:883

table

Union:t:889

table

Union:t:893

table

table

table

table

table

Union:t:884

table

Union:t:890

table

Union:t:892

table

Union:t:894

table

table

tabletable

Cache:t:857

tabletable

RowTable:t:856

table

Cache:t:863

tabletable

RowTable:t:862

table

Array:t:866

tabletable

Project:t:875

table

table

Filter:t:895

table

table

Union:t:949

table

table

Union:t:897

table

Union:t:876

table

Cache:t:880

table

tabletable

Partition:t:885

table

Array:t:886

table

tabletable

Cache:t:888

tabletable

RowTable:t:887

table

table

Union:t:896

table

Union:t:900

table

Project:t:898

table

table

Union:t:899

table

table

Cache:t:946

table

Partition:t:901

table

Array:t:904

table

Array:t:905

table

Array:t:906

table

Array:t:907

table

Array:t:908

table

Array:t:909

table

Array:t:910

table

Array:t:911

table

Array:t:912

table

Array:t:913

table

Array:t:914

table

Array:t:915

table

Array:t:916

table

Array:t:917

table

Array:t:918

table

Array:t:919

table

Array:t:920

table

Array:t:921

table

Array:t:922

table

Array:t:923

table

Array:t:925

table

Array:t:926

table

Array:t:927

table

Array:t:928

table

Array:t:929

table

Array:t:930

table

Array:t:931

table

Array:t:932

table

Array:t:933

table

Array:t:934

table

Array:t:935

table

Array:t:936

table

Array:t:937

table

Array:t:938

table

Array:t:939

table

Array:t:940

table

Array:t:941

table

Array:t:942

table

Array:t:943

table

Array:t:944

table

Aggregate:t:902

table

table

Union:t:952

table

Union:t:958

table

Union:t:960

table Union:t:962

table

Flatten:t:903

table

table

Cache:t:945

table

table

table

Union:t:951

table

Union:t:957

table

Union:t:961

table

tabletable

Cache:t:964

tabletable

Union:t:968

table

table

Cache:t:965

table

Cache:t:947

tabletable

RowTable:t:924

table

Array:t:950

tabletablePartition:t:953

table

Array:t:954

table

tabletable

Cache:t:956

tabletable

RowTable:t:955

table

table

table

Union:t:976

table

table

Project:t:970

table

table

Cache:t:974

table

Union:t:977

table

Cache:t:966

tabletable

RowTable:t:963

table

Array:t:969

Partition:t:971

table

Array:t:972

table

tabletable

Union:t:979

tabletable

Project:t:980

table

Cache:t:975

tabletable

RowTable:t:973

table

Project:t:983

table

HashJoin:t:1023

table

Limit:t:1034

table

Project:t:1033

table

Union:t:982

table

Partition:t:986

table

Array:t:989

table

Distinct:t:984

table

HashJoin:t:987

table

Cross:t:993

table

Partition:t:985

table

Array:t:988

table

tabletable

Union:t:994

table

Partition:t:999

table

Array:t:1002

table

HashJoin:t:1000

table

Cross:t:1006

table

Project:t:996

Distinct:t:997

table

Partition:t:998

table

Array:t:1001

table

RowTable:t:995

table

table table

Union:t:1007

table

Project:t:1008

table

Once:t:1009

table

Array:t:1011

table

Partition:t:1010

table

Array:t:1012

table

Limit:t:1014

table

Project:t:1013

table

Project:t:1015

table

Union:t:1017

table

Partition:t:1018

table

Array:t:1019

table

Project:t:1020

table

Partition:t:1022

table

Array:t:1025

table

table

Union:t:1036

table

Union:t:1038

table

Cache:t:1032

table table

Union:t:1037

table

Union:t:1047

table

tableCache:t:1044

table

tabletable

Partition:t:1039

table

Array:t:1040

table

Project:t:1041

table

table

Cache:t:1043

table

tableUnion:t:1050

table

table

Union:t:1049

table

Project:t:1051

table

Cache:t:1058

table

Union:t:1061

table

Cache:t:1045

tabletable

RowTable:t:1042

table

Array:t:1048

Partition:t:1053

table

Array:t:1054

table

table

Union:t:1060

table

Once:t:1052

table

Array:t:1056

table

Union:t:1063

tabletable

Cache:t:1057

tabletable

table

Project:t:1064

table

table

Once:t:1065

table

Array:t:1066

table

Project:t:1067

table

Cache:t:1059

table

table

RowTable:t:1055

table

HashJoin:t:1082

table

Union:t:1094

table

Union:t:1096

table

Partition:t:1099

table

Array:t:1102

table

Union:t:1113

table

Union:t:1069

table

table

Project:t:1070

table

Partition:t:1071

table

Array:t:1072

table

Project:t:1073

table

Project:t:1074

table

Union:t:1076

table

Partition:t:1077

table

Array:t:1078

table

Project:t:1079

table

Partition:t:1081

table

Array:t:1084

table

table

Union:t:1095

table

Union:t:1097

table

Partition:t:1100

table

Array:t:1103

table

Union:t:1114

table

Cache:t:1091

table

table

HashJoin:t:1101

table

Union:t:1115

table Union:t:1117

table

Union:t:1119

table

tabletable

table

Union:t:1116

table

Union:t:1118

table

Union:t:1120

table table

tabletable

Cache:t:1093

tabletable

RowTable:t:1092

table

Array:t:1098

tabletable

Project:t:1107

table

Cache:t:1126

table

Union:t:1128

table

Project:t:1121

table

Union:t:1108

table

Cache:t:1112

table

tabletable

Partition:t:1123

table

Array:t:1124

table

table

Union:t:1129

table

tablePartition:t:1132

table

Array:t:1135

table

table

Cache:t:1122

table

table

Union:t:1131

table Partition:t:1133

table

Array:t:1136

table

table

Union:t:1147

table

HashJoin:t:1134

table

table

table

table

Project:t:1148

table

Cache:t:1127

tabletable

RowTable:t:1125

table

table

Project:t:1140

table

Cache:t:1149

table

Union:t:1141

table

Cache:t:1145

table

tabletable

Project:t:1150

table

table

Figure 6-7: Workflow that generates a multi-view visualization

Finally, Figure 6-7 shows an example of the compiled workflow. The black arrows connect

153

the physical operators in the workflow, the green arrows connect table operations, and the
red and orange arrows connect a physical operator with its input and output data relation,
respectively. We note that the green edges represent a single set of relational transformations
from the input data to the resulting visualization.

6.6.3 I NTERACT ION
Ermac visualizations support hovering over, selecting, and clicking on elements in the
visualization. Developers can register callback functions for select,hover, and click events,
and Ermac passes the active view and a set of tuples containing the corresponding visual
elements to the callback function. For example, the following code fragment registers a
select event handler that prints the id of each visual element that the user selects:

plot.on("select", (tuples, view) ->
tuple.each (tuple) -> console.log(tuple.get(’id’))

)

6.6.4 OPT IM IZER
Ermac currently preforms a very simple set of rule-based optimizations. The operator
placement algorithm assumes that the client and server have identical performance and
places operators to minimize the amount of network traffic, with the constraint that the
rendering operators must be on the client. The cache placement algorithm currently inserts
a caching operator immediately before the first rendering operator so that subsequent
executions of the plan (e.g., in another user’s browser window) can avoid executing a
significant portion of the plan and simply directly render the cached data from a pre-
computed file. The operator merging algorithm combines The compute() method of adjacent
operators that share the same partition key in order to avoid unnecessarily repartitioning
the data relation.

6.6.5 PROVENANCE
One of the key reasons that Ermac composes the large relational plan shown as the green
edges in Figure 6-7 is to simplify the task of tracking provenance (and lineage) information.
This allows Ermac to employ the techniques described in Chapter 3 to manage this provenance
information.

154

Our current implementation uses a barebones provenance system that tracks operator
provenance (the graph in Figure 6-7) and record-level provenance (the input records of each
operator that contributed to each output record) and provides a simple provenance query
interface to query the provenance of operators and records. The operator provenance graph
is modeled as a directed graph where child operators consume the results of parent operators.
Ermac provides standard graph traversal functions for accessing parents, children, ancestors,
and descendents.

The record-level provenance interface supports backward queries of the form “what input
records of operator A contributed to a subset of operator B’s output records?” and forward
queries of the form “what output records of operator A contributed to a subset of operator
B’s input records?”:

ermac.backward(records or record ids, A, B)

ermac.forward(records or record ids, A B)

Record-level provenance queries return a collection of records that can be manipulated
as a native ECMAScript array. For example, let marks be a set of marks in Figure 6-2’s
view A that are selected by the user. The following code snippet first retrieves the input
records at the Source operator that contributed to marks, finds the marks in view B that
share the same inputs, and iterates through the resulting marks to highlights each one.

inputs = ermac.backward(marks, ViewA, Source)
marks = ermac.forward(inputs, Source, ViewB)
marks.each((mark) -> mark.highlight())

The code below extends the visualization example in Section 6.6.2 with a brushing and
linking interaction between plot and a second visualization of the election data, plot2.
When the user selects data in plot, the visualization elements in plot2 are also highlighted.
The selection handler executes a backward lineage query to retrieve the input tuples of
the selected visual elements, and a forward lineage query to find all of the visual elements
derived from those inputs. The final line highlights each of the visual elements.

155

// plot2 is a second visualization of the election data

plot2 = ermac(...);

plot.on(’select’, (tuples, view) ->

inputs = ermac.backward(tuples, view, ’source’)

marks = ermac.forward(tuples, ’source’, null)

marks.each((mark) -> mark.highlight())

)

6.6.6 F INE TUN ING
Creating a visualization goes beyond computing and rendering a graphical layout. It also
involves typography (e.g., the typeface, the font size), the use of whitespace within and
between subplots, the choice of color, and other fine-tuning elements. Although these details
are not the focus of the system, Ermac implements two presentation-related features to
make its visualizations more pleasant and configurable.

First, users can use cascading style sheets (CSS) to tune each of the graphical elements
in the visualization. The default Ermac stylesheet mimics a style similar to ggplot2, with a
light grey plot background, white grid lines, and subdued saturation.

Second, Ermac implements a simple constraint-based system to intelligently format,
resize, and position axis and facet labels. The primary purpose is to improve legibility by
avoiding labels that overlap with each other or exceed the side of its bounding box, and to
adhere to aethestic design principles such as making appropriate use of whitespace. The
system supports text transformations such as font size reduction, truncation, rotation, and
can hide labels or resize the graphical plotting area as a final resort.

6.7 BENEF I T S OF A DVMS
Dava visualization is part of a larger data analysis process. Although we have proposed
techniques for a DVMS to manage the data transformation, layout, and rendering processes
for creating static data visualizations, the vision is for an interactive DVMS system that
manages how data is viewed, explored, compared and finally published into stories for
consumers to experience.

To this end, there are numerous interesting research directions to explore, such as (1)
expanding our language proposal (Section 6.3) into a comprehensive language that can

156

also describe user interactions in a manner that is amenable to cost-based optimization,
(2) understanding interaction and visualization-specific techniques that can be used in an
optimization framework to either meet interactive (100ms) latency constraints or mask high-
latency queries, (3) exploiting different classes of hardware (e.g., GPUs) that are optimized
for specific types of visualizations, and (4) incorporating recommendation and higher-level
analysis tools that help users gain sound insights about their data.

The rest of this section outlines some immediate steps that help address each of these
research directions.

6.7.1 V I SUAL I ZAT ION FEATURES

Lineage-based Interaction
Many visualization tools provide provenance tracking as a graph of historical actions and/or
states [40, 47, 60], or a simple undo log. In contrast, a DVMS can track how individual data
records are transformed during the visualization rendering process, and how visual elements
change and are manipulated as the user interacts with the visualization. This functionality
can potentially increase the richness and performance of visualization interactions.

As one example, consider Brushing and linking [13] which is a core interaction technique
(Figure 6-3 arrow 6) where user data selections in one view are reflected on the corresponding
data (by highlighting or hiding them) in the other views. To do this, selected elements must
be traced back to their input records, and then forward from those inputs to the visual
elements in the other views. Unfortunately, existing visualization tools either require users
to track these lineage relationships manually [19, 108], or provide implementations that
often scale poorly to larger datasets and more complex visualizations.

In contrast, the DVMS’ relational formulation captures these lineage relationships
automatically, and can thus express brushing and linking as lineage queries. Furthermore,
workflows allow the DVMS to optimize and scale interactions to very large datasets with little
user effort. For example, the DVMS can automatically generate the appropriate data cubes
and indices to optimize brushing and linking similar to the techniques used in imMens [72]
and nanocubes [71].

The database community has explored many lineage optimizations [43, 56, 64, 118],
however, additional techniques such as pre-computation and approximation will be necessary
to efficiently support a truly interactive visualization environment.

157

Visualization Estimation and Steering
Users can easily build workflows that execute slowly or require significant storage space
to pre-compute data structures, and it would be valuable to alert users of such costs. The
DVMS can make use of database cost estimation [28, 29, 101] techniques to inform users
of expensive visualizations (e.g., a billion point scatterplot) and inherent storage-latency
trade-offs, and to steer users towards more cost-effective views. The latter idea (e.g., query
steering [22]) may benefit from understanding the specification that produced the queries.

Rich Contextual Recommendations
Recommending relevant or surprising data is a key tool as users interactively explore their
datasets. Prior work has focused on recommending visualizations and queries based on
singular, but semantically different features such as data statistics [76], image features [87],
or historical queries [65, 89, 98]. A DVMS can control and use all of these features to
construct more salient recommendations to the user. For example, image features such as
mountain ranges may be of interest when rendering maps, whereas the slope of a line chart
is important when plotting monthly expense reports.

Result analysis
Several recent projects [80, 115], including the Scorpion project described in Chapter 4 extend
databases to automatically explain anomalies and trends. Thus the DVMS can use these
extensions “for free” to not only present data, but also embed functionality to automatically
explain and debug the results. Chapter 5 explores how these algorithms can be integrated
into an exploratory visualization system.

6.7.2 QUERY EXECUT ION
Developing visualizations that are interactive across various environments and client devices
(e.g., phone, laptop) can be challenging. The DVMS can allow users to specify latency
goals (e.g., 200ms interaction guarantees) and use end-to-end optimizations to satisfy these
constraints.

Rendering Placement
Rendering placement decides where to render visualizations given the client’s available
resources. For instance, heatmaps may be faster to render server-side and send to the client

158

as a compressed image, whereas histograms are faster to send as data records and render on
the client.

Psychophysical Approximation
Psychophysical approximation computes approximations of the visualization in a way that
minimizes user perceived error, and is widely used in image and video compression. For
example, humans are sensitive to position but have trouble discerning small color variations.
DVMSes can then respond to poor network bandwidth by pushing down an aggregation
operator to coarsely quantize the color of a heatmap to match a smaller data type (e.g., short
instead of long), and thus reduce the bandwidth demand by 4×. Alternatively, the system
can aggregate the histogram data into coarse bins and use pre-computed data structures
to reduce latency. Developing sufficient annotations to automate this optimization is an
interesting research direction.

VisualizationMaterialization
The DVMS could use materialization techniques to pre-compute entire visualizations or
components of the execution plan. This can be valuable when publishing visualizations to a
consumer audience that expects low latency interactions but does not want to modify the
visualization specification. This can be coupled with view maintenance techniques to, for
example, update the visualization as the underlying dataset changes, as is the case in data
streams. Alternatively, modifications made in the visualization, in applications such as data
cleaning, can be transparently propogated as updates to the dataset.

6.8 CONCLUS IONS
The explosive growth of large-scale data analytics and the corresponding demand for
visualization tools will continue to make database support for interactive visualizations
increasingly important. We proposed Ermac, a Data Visualization Management System
(DVMS) that executes declarative visualization specifications as a series of relational queries.
The following two chapters focus on the implementation of a provenance-based outlier
analysis feature that can be integrated into a DVMS such as Ermac. Section 6.7 describes
exciting future research directions that exploit the DVMS’ unified execution model to
enhance the functionality and performance of a DVMS.

159

7 RelatedWork

The projects described in this dissertation each addressed a distinct problem in the design
of a general visual exploration and analysis system, and the corresponding topics span the
visualization, database, and data provenance communities. This chapter discusses the past
work that this thesis builds upon, as well as more recent developments since the publication
of the papers presented in this thesis.

The following sections are organized as follows: Section 7.1 provides an overview of
data visualization systems, Section 7.2 describes prior work on provenance systems and the
relevant theory, and Section 7.3 introduces techniques for analyzing data analysis results.

7.1 DATA V I SUAL I ZAT ION SYSTEMS
Previous work in visualization systems have traded-off between expressiveness and perfor-
mance. For instance, popular toolkits such as D3 [19], protovis [18] and matplotlib [51] are
highly expressive, however they require low-level programming that impedes the ability to
quickly iterate and do not scale to large datasets. Declarative grammar-based languages such
as the Grammar of Graphics [114] and ggplot2 [111] are expressive domain-specific languages
designed for rapid iteration, however they do not scale beyond their host environments of
SPSS and R.

Recent systems address these scalability limitations by either adopting specific data
management techniques such as columnar data representation [63], pre-computation [72],
indexing [71], sampling [4], speculation [61], and aggregation [12, 112], or developing two-
tiered architectures where the visualization client composes and sends queries to a data
management backend [57, 102]. The former approaches are optimized towards properties of
specific applications or visualization types and may not be broadly applicable. The latter
forgo the numerous cross-layer optimizations described in Section 6.7.

161

7.2 PROVENANCE MANAGEMENT SYSTEMS
There is a long history of provenance and lineage research both in database systems and
in more general workflow systems. There are several excellent surveys that characterize
provenance in databases [30] and scientific workflows [17, 36]. In this section, we survey prior
provenance systems work in terms of general workflow systems, database systems, and other
systems.

7.2.1 WORKFLOW L INEAGE
Most workflow systems support custom operators containing user-designed code that is
opaque to the runtime. This presents a difficulty when trying to manage cell-level (e.g., array
cells or database tuples) lineage. Some systems [41, 69] model operators as black-boxes where
all outputs depend on all inputs, and track the dependencies between input and output
datasets. Efficient methods to expose, store and query cell-level lineage is still an area of
on-going research.

Several projects exploit workflow systems that use high level programming constructs
with well defined semantics. RAMP [53] extends MapReduce to automatically generate
lineage capturing wrappers around Map and Reduce operators. Similarly, Amsterdamer et
al [9] instrument the PIG [88] framework to track the lineage of PIG operators. However,
user defined operators are treated as black-boxes, which limits their ability to track lineage.

Newt [73] is a provenance system for HyRacks [16] that also provides a lineage API for
custom operators. Unlike SubZero, the operator code makes separate addInput(record,
tag) and addOutput(record, tag) calls and dependency relationships are defined between
all input and output records with the same tag value that also obey temporal causality i.e.,
output records can only depend on inputs that were registered beforehand. Their API may
be easier to use because the system can infer lineage relationships on behalf of the developer.
In addition, Newt always materializes lineage information and does not provide mechanisms
nor policies to manage materialization strategies..

Other workflow systems (e.g., Taverna [86] and Kepler [8]), process nested collections of
data, where data items may be images or DNA sequences. Operators process data items
in a collection, and these systems automatically track which subsets of the collections
were modified, added, or removed [10, 82]. Chapman et. al [27] attach to each data item
a provenance tree of the transformations resulting in the data item, and propose efficient
compression methods to reduce the tree size. However, these systems model operators as
black-boxes and data items are typically files, not records.

162

7.2.2 DATABASE L INEAGE
Database systems execute queries that process structured tuples using well defined relational
operators, and are a natural target for a lineage system. Cui et. al [33] identified efficient
tracing procedures for a number of operator properties (Section 3.6 describes several mecha-
nisms that can implement many of these procedures.) These procedures are then used to
execute backward lineage queries. However, any language that allows custom operators will
need to deal with user defined operators and their model does not allow arbitrary operators
to generate lineage, and treats them as black-boxes.

Trio [113] was the first database implementation of cell-level lineage, and unified uncer-
tainty and provenance under a single data and query model. Trio explicitly stores relationships
between input and output tuples, and is analogous to the full provenance approach. Ikeda et.
al [52, 55] extended the Trio work and explored the relationships between SQL and lineage.
They defined the semantics of logical provenance, a special case of the mapping lineage
described in Section 3.6.2, and use the semantics to statically construct backward mapping
functions for a useful class of SQL Select-Project-Join (SPJ) queries.

Allison et. al [116] introduced the notion of a weak inverse function. Such a function
can only approximately compute the lineage of a given subset of an operator output, and
requires an additional verification function that has access to the input array values to
accurately compute the lineage 1. Although inefficient, SubZero’s payload lineage can model
weak inverse and verification functions by encoding the output and input array values inside
the binary payload and implementing both functions in the payload function. It is interesting
to consider an efficient intermediate lineage representation similar to weak inverse functions
that lay between mapping lineage, which is too restrictive, and payload lineage, which is too
general.

7.2.3 PROVENACE IN OTHER SYSTEMS
The SubZero runtime API is inspired by the PASS [84, 85] provenance API. PASS is a file
system that automatically stores and indexes provenance information of files and processes,
and provides a powerful provenance query interface. Applications can use the libpass library to
create abstract provenance objects and relationships between them, analagous to producing
cell-level lineage. PASS is primarily focused to tracking the relationships between process
execution and file-level (coarse-grained) modifications to the file system. SubZero extends
this API in the context of fine-grained lineage support in scientific applications.

1In their work, they assume the weak inverse function has access to output values. In contrast SubZero
assumes the mapping function only has access to cell coordinates.

163

Provenance has also been extended in the declarative networking community. Declarative
networking [75] models network protocols as recursive queries over distributed relational state.
The network datalog (NDLog) language extends Datalog [74] to be aware of network-related
constraints on distribution, communication, and state. ExSpan [124] models provenance
information as distributed tables that track the dependencies between tuples (state) and
NDLog rules, and develop incremental materialization rules for maintaining these prove-
nance tables as an NDLog program executes. Subsequent work on the Y! [119] system use
counterfactual logic to support "Why not?" provenance queries that ask why an expected
tuples does not exist, for example, why there are a lack of requests in the network.

Finally, information flow control in operating systems [14, 68, 123] tracks how data
flows within the application or OS in order to control data sharing with the external world.
In addition, systems such as Retro [67] track systems level provenance (called an action
history graph) and uses it to undo undesirable historical actions, then selectively re-run
legitimate actions that depended on undoed actions. Warp [25] extends the Retro model to
database-backed web applications by tracking how the web application updates and reads
the database state.

7.3 OUTL I ER EXPLANAT ION
The topic of deriving the relationships between the output of a computation function and
the function inputs has been explored in numerous domains. This section focuses on prior
work in the context of database queries and how the same problem maps to closely related
domains such as network analysis.

7.3.1 SENS I T I V I TY ANALYS I S
Sensitivity analysis studies how uncertainty or variance, of inputs to a model relate to the
uncertainty or variance of the output values. Saltelli [95] presents an overview of the area.
The why explanation problem can be modeled as a sensitivity analysis problem, where the
SQL query is the model, and we want to understand in what ways the aggregation results
are sensitivy to differente subsets of the database. The main differences are that the input is
the entire database state so more efficient methods are necessary to make this problem even
remotely tractable, and that we are interested in a specify type of change in the output (e.g.,
average temperature should be lower) rather than a general analysis of the output variance.

164

7.3.2 OUTL I ER DETECT ION
Outlier detection is a core technology in applications as diverse as video processing to detect
intruders, industrial manufacturing to identify defective parts, patient health monitoring
to alert severe health conditions, and credit card fraud detection. Thus unsurprisingly, it
has a rich history of research in the machine learning, information theory, data mining, and
statistics communities. Techniques such as clustering techniques in data-mining, one-class
classifiers using support vector machines or density estimators in machine learning, and
naive bayesian networks have all been studied for their application in outlier detection. The
appropriate method varies depending on the problem domain, the amount of supervision
(labeled data), the amount of apriori modeling, and the dimensionality of the datasets. Please
refer to Chandola et. al [24] for a comprehensive overview of the topic, Hodge et. al [48] for
a survey of machine learning and statistical approaches, and Markou et. al [78] for a survey
of statistical approaches.

Scorpion does not attempt to solve this problem, we assume that the outliers have already
been identified and labeled.

7.3.3 RESULT EXPLANAT ION
Rule-based learning algorithms have long been used to generate human understandable
predicates to distinguish positively and negatively labeled datasets. Classification and
regression trees [20] are a popular class of learning algorithms that build rules in disjunctive
normal form. The DT algorithm described in Chapter 4 is based on regression tree learning
algorithms. These algorithms can be used in conjunction with outlier detection techniques
to identify and describe outliers in datasets.

The main contrast between Scorpion and traditional outlier explanation is that Scorpion’s
input is not a dataset with individually labeled records. Instead, the records are labeled
as groups based on how the data was aggregated in the SQL query. Thus the goal is to
differentiate the influential subset of the positively labeled records, whereas traditional
outlier explanation tries to describe all of the positively labeled records.

Why Explanation
In the past year, there have been a number of projects that, like Scorpion, explain outliers
of aggregation queries. Roy et. al [92] extend this model to support multi-table queries that
compare ratios between multiple aggregation queries, and develop a formal approach to

165

identify and describe a minimal subset of the input data. Their work also describes how to
leverage materialized data cubes for simple COUNT() queries.

The DBRx [23] system is a general purpose data-cleaning system that identifies and
explain errors in result tuples that violate constraints in the form of predicates. In contrast
to Scorpion, they support subqueries as well as aggregation and non-aggregation queries. In
addition, the system differentiates between explanations that can be generated with access
to the result’s lineage, and when the lineage is not available. Given the set of result errors,
each with weight 1, DBRx traverses the query’s operator tree top-down and distributes
the weights to the result’s operator lineage. A rule-learning algorithm then contructs a
disjunctive predicate to cover the input tuples with non-zero weight.

Query Transformation
A number of database projects have tackled the problem of transforming either the input
dataset or the user’s SQL to cause desired changes in the result set.

Tiresias [81] is a system that allows users to specify incorrect results of a TiQL (con-
strained version of datalog) query, and will identify changes to the input database that fix
the incorrect values. It encodes the problem as input to a Mixed Integer Program solver,
which generates a solution. The VCC [79] work by the same authors uses a SAT solver to
provide similar functionality to errors as the result of boolean expressions. In both cases, the
solutions make tuple-at-a-time modifications to the database, rather than predicate-at-a-time.
In addition, these techniques need to encode the the relevant database contents into the
MIP or SAT problem, which limits the scalability to tens or low hundreds of tuples.

The Why Not? problem [26, 50, 107] seeks to understand why records that should be
in the result are not present. Huang et. al [50] and Tiresias [81] explore how to change
the database state on a per-tuple basis, whereas an alternative formulation of the problem
focuses on changes to the SQL query [26, 107].

We note that these problems are similar to the Query-by-Example problem [125, 126],
which attempts to synthesize a query given a database and example result tuples. In contrast,
the above problems try to learn a modification to an original query.

General Explanation
Sunita el al. apply statistical approaches to similar applications that explore and explain
values in an OLAP data cube. iDiff [96] uses an information-theoretic approach to generate
summary tuples that explain why two subcubes’ values differ (e.g., higher or lower). Their
cube exploration work [97] uses the user’s previously seen subcubes during a drill-down session

166

to estimate the expected values of further drill-down operations. The system recommends
the subcube most differing from expectation, which can be viewed as an “explanation”.
RELAX [99] lets users specify subcube trends (e.g., drop in US sales from 1993 to 1994) and
finds the coarsest context that exhibits the similar trend. Scorpion differs by explicitly using
influence as the optimization metric, and supports additional information such as hold-out
results and error vectors.

MRI [35] is designed in the context of collaborative ratings, and searches for a predicate
over the user attributes (e.g., age, state, sex) that most explains average rating of a movie or
product (e.g., IMDB ratings). Their work is optimized for the AV G() operator and uses a
randomized hill climbing algorithm to find the most influential cuboid in the rating’s OLAP
lattice.

PerfXplain [66] explains why some MapReduce [37] jobs ran faster or slower than others.
The authors provide a query language that lets users easily label pairs of jobs as normal
or outliers, and uses a decision tree to construct a predicate that best describes the outlier
pairs. This problem is similar to traditional outlier explanation where examples are labeled
individually.

Domain Specific Algorithms
Explaining and detecting aggregate outliers has been explored in specialized settings. In
network analysis, this is described as the heavy hitters problem. A process consumes a data
stream of packet metadata (tuple of source and destination ip) and seeks to find precise
descriptions of source and destination subnets that contribute above a pre-specified fraction
of the network traffic (the heavy-hitters). This can be viewed as a specialized version of the
outlier explanation problem in a streaming scenario for the SQL query:

SELECT count(∗) FROM network GROUP BY window

167

8 Conclusion

Data-driven decision making and data analysis grown in both importance and availability in
the past decade, and has seen increasing acceptance in the broader population. Visual tools
that enable non-technical users to explore and make sense of their datasets is challenging,
both in terms of developing the systems that can automate the manual and error-prone data
analysis tasks and designing intuitive interfaces to these systems

In this thesis, we explored several techniques to help address a common data analysis
task thas is ill-served by existing visual analytical tools. Specifically, although visualization
tools are well suited to identify patterns in datasets, they do not help users characterize
surprising trends or outliers in the visualization and leave that task to the user. In response,
we developed the system, algorithms, and interface of an end-to-end visualization tool and
found that it can effectively help analysts answer questions about outliers in their data.

Building upon these results, we proposed the design of a general Data Visualization
Management System (DVMS) that combines the data processing and optimization features
of a database system with the interactive and visualization properties of a visualization
system. The integrated design enables a number of powerful visualization features such
as those developed in this dissertation, as well as a number of promising end-to-end data
visualization optimization techniques.

169

Bibliography

[1] Benchmark of serial lp solvers. http://plato.asu.edu/ftp/lpfree.html. Accessed: 2014-07-08.

[2] Tableau. http://www.tableausoftware.com.

[3] Serge Abiteboul, Dallan Quass, Jason Mchugh, Jennifer Widom, and Janet Wiener.
The lorel query language for semistructured data. International Journal on Digital
Libraries, 1:68–88, 1997.

[4] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. Blinkdb: queries with bounded errors and bounded response times on
very large data. EuroSys, 2013.

[5] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic subspace clustering of high dimensional data for data mining applications.
In DMKD, pages 94–105, 1998.

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules. In Proc. of 20th Intl. Conf. on VLDB, pages 487–499, 1994.

[7] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,
Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, et al.
The stratosphere platform for big data analytics. The VLDB Journal, pages 1–26,
2014.

[8] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: an
extensible system for design and execution of scientific workflows. In SSDM, 2004.

[9] Yael Amsterdamer, Susan Davidson, Daniel Deutch, Tova Milo, Julia Stoyanovich,
and Val Tannen. Putting lipstick on pig: Enabling database-style workflow provenance.
In PVLDB, 2012.

[10] Manish Kumar Anand, Shawn Bowers, Timothy McPhillips, and Bertram LudÃďscher.
Efficient provenance storage over nested data collections. In EDBT, 2009.

[11] Douglas Bates and Martin Maechler. lme4: Linear mixed-effects models using S4
classes, 2009. R package version 0.999375-31.

[12] Leilani Battle, Remco Chang, and Michael Stonebraker. Dynamic reduction of query
result sets for interactive visualization. IEEE Big Data Visualization, 2013.

171

http://plato.asu.edu/ftp/lpfree.html
http://www.tableausoftware.com

[13] Richard A. Becker and William S. Cleveland. Brushing scatterplots. Technometrics,
1987.

[14] E. D. Bell and J. L. La Padula. Secure computer system: Unified exposition and
multics interpretation, 1976.

[15] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. Elmore, S. Madden,
and A. G. Parameswaran. DataHub: Collaborative Data Science and Dataset Version
Management at Scale. ArXiv e-prints, September 2014.

[16] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Vernica.
Hyracks: A flexible and extensible foundation for data-intensive computing. In ICDE11,
pages 1151–1162, 2011.

[17] RAJENDRA BOSE and JAMES FREW. Lineage retrieval for scientific data processing:
A survey. In ACM Computing Surveys, 2005.

[18] Michael Bostock and Jeffrey Heer. Protovis: A graphical toolkit for visualization.
InfoVis, 2009.

[19] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven documents.
InfoVis, 2011.

[20] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classifi-
cation and Regression Trees. Chapman & Hall, New York, NY, 1984.

[21] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Cláudio T.
Silva, and Huy T. Vo. Vistrails: Visualization meets data management. In Proceedings of
the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD
’06, pages 745–747, New York, NY, USA, 2006. ACM.

[22] Ugur Cetintemel, Mitch Cherniack, Justin DeBrabant, Yanlei Diao, Kyriaki Dimi-
triadou, Alex Kalinin, Olga Papaemmanouil, and Stan Zdonik. Query steering for
interactive data exploration. In Proceedings of CIDR’13, 2013.

[23] Anup Chalamalla, Ihab F. Ilyas, Mourad Ouzzani, and Paolo Papotti. Descriptive and
prescriptive data cleaning. In SIGMOD Conference, pages 445–456, 2014.

[24] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Outlier detection: A survey,
2007.

[25] Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zeldovich.
Intrusion recovery for database-backed web applications. In SOSP, pages 101–114,
2011.

[26] Adriane Chapman and H. V. Jagadish. Why not? In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’09, pages
523–534, New York, NY, USA, 2009. ACM.

[27] Adriane P. Chapman, H.V. Jagadish, and Prakash Ramanan. Efficient provenance
storage. In SIGMOD, 2008.

172

[28] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. Estimating
progress of execution for sql queries. In SIGMOD, 2004.

[29] Surajit Chaudhuri and Vivek R. Narasayya. Autoadmin ’what-if’ index analysis utility.
In SIGMOD, 1998.

[30] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and
where. In Foundations and Trends in Databases, 2009.

[31] Jaeyoung Choi, James Demmel, Inderjit S. Dhillon, Jack Dongarra, Susan Ostrouchov,
Antoine Petitet, Ken Stanley, David W. Walker, and R. Clinton Whaley. Scalapack: A
portable linear algebra library for distributed memory computers - design issues and
performance. In PARA’95, pages 95–106, 1995.

[32] William S. Cleveland and Robert McGill. Graphical perception: Theory, experimen-
tation, and application to the development of graphical methods. Journal of the
American Statistical Association, 79(387):pp. 531–554, 1984.

[33] Y. Cui, J. Widom, and J. L. Viener. Tracing the lineage of view data in a warehousing
environment. In ACM Transactions on Database Systems, 1997.

[34] TomaÅ¿ Curk, Janez DemÅąar, Qikai Xu, Gregor Leban, UroÅą Petrovic, Ivan Bratko,
Gad Shaulsky, and BlaÅ¿ Zupan. Microarray data mining with visual programming.
Bioinformatics, 21:396–398, February 2005.

[35] Mahashweta Das, Sihem Amer-Yahia, Gautam Das, and Cong Yu. Mri: Meaningful
interpretations of collaborative ratings. In PVLDB, volume 4, 2011.

[36] Susan B. Davidson, Sarah Cohen Boulakia, Anat Eyal, Bertram Ludäscher, Timothy M.
McPhillips, Shawn Bowers, Manish Kumar Anand, and Juliana Freire. Provenance in
scientific workflow systems. IEEE Data Eng. Bull., 30(4):44–50, 2007.

[37] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008.

[38] Mary T. Dzindolet, Scott A. Peterson, Regina A. Pomranky, Linda G. Pierce, and
Hall P. Beck. The role of trust in automation reliance. International Journal of
Human-Computer Studies, 58(6):697 – 718, 2003.

[39] Montserrat Fuentes, Bowei Xi, and William S. Cleveland. Trellis display for modeling
data from designed experiments. Statistical Analysis and Data Mining, 4(1):133–145,
2011.

[40] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1 edition,
1994.

[41] J Goecks, A Nekrutenko, J Taylor, and The Galaxy Team. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational
research in the life sciences. In Genome Biology, 2010.

173

[42] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali
Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data Mining Knowledge
Discovery, 1(1):29–53, January 1997.

[43] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali
Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. KDD, 1997.

[44] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In
PODS, 2007.

[45] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’84, pages 47–57, New York, NY, USA, 1984. ACM.

[46] Jeffery Heer and Ben Shneiderman. Interactive dynamics for visual analysis. http:
//queue.acm.org/detail.cfm?id=2146416.

[47] Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. Graphical histories
for visualization: Supporting analysis, communication, and evaluation. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis), 14:1189–1196, 2008.

[48] Victoria J. Hodge and Jim Austin. A survey of outlier detection methodologies.
Artificial Intelligence Review, 22(2):85–126, 2004.

[49] David A. Holland, Uri Braun, Diana Maclean, Kiran kumar Muniswamy-reddy, and
Margo I. Seltzer. Choosing a data model and query language for provenance, 2008.

[50] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On the prove-
nance of non-answers to queries over extracted data. PVLDB, 1(1):736–747, 2008.

[51] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, 2007.

[52] Robert Ikeda. Provenance in data-oriented workflows. 2012.

[53] Robert Ikeda, Hyunjung Park, and Jennifer Widom. Provenance for generalized map
and reduce workflows. In CIDR, 2011.

[54] Robert Ikeda, Semih Salihoglu, and Jennifer Widom. Provenance-based refresh in
data-oriented workflows. In CIKM, pages 1659–1668, 2011.

[55] Robert Ikeda, Akash Das Sarma, and Jennifer Widom. Logical provenance in data-
oriented workflows? In ICDE, pages 877–888, 2013.

[56] Robert Ikeda and Jennifer Widom. Panda: A system for provenance and data. In
IEEE Data Engineering Bulletin, 2010.

174

http://queue.acm.org/detail.cfm?id=2146416
http://queue.acm.org/detail.cfm?id=2146416

[57] Jean-Francois Im, Felix Giguere Villegas, and Michael J. McGuffin. Visreduce: Fast
and responsive incremental information visualization of large datasets. In BigData
Conference, 2013.

[58] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. In EuroSys, pages
59–72, New York, NY, USA, 2007. ACM.

[59] Z. Ivezi, J.A. Tyson, E. Acosta, R. Allsman, S.F. Anderson, et al. LSST: From science
drivers to reference design and anticipated data products.

[60] T.J. Jankun-Kelly, Kwan-Liu Ma, and Michael Gertz. A model and framework for
visualization exploration. IEEE Transactions on Visualization and Computer Graphics,
13(2):357–369, 2007.

[61] Niranjan Kamat, Prasanth Jayachandran, Kathik Tunga, and Arnab Nandi. Distributed
and Interactive Cube Exploration. In ICDE, 2014.

[62] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Heer Jeffrey. Enterprise data
analysis and visualization: An interview study. VAST, 2012.

[63] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer.
Profiler: Integrated statistical analysis and visualization for data quality assessment.
In Advanced Visual Interfaces, 2012.

[64] Alfons Kemper and Guido Moerkotte. Advanced query processing in object bases
using access support relations. In VLDB, 1990.

[65] Alicia Key, Bill Howe, Daniel Perry, and Cecilia R. Aragon. Vizdeck: self-organizing
dashboards for visual analytics. SIGMOD, 2012.

[66] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. Perfxplain: debugging
mapreduce job performance. VLDB, 5(7):598–609, March 2012.

[67] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intrusion recovery
using selective re-execution. In OSDI, 2010.

[68] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information flow control for standard os abstractions.
SOSP, 41(6):321–334, October 2007.

[69] Heidi Kuehn, Arthur Liberzon, Michael Reich, and Jill P. Mesirov. Using genepattern
for gene expression analysis. Curr. Protoc. Bioinform., Jun 2008.

[70] John D. Lee and Katrina A. See. Trust in automation: Designing for appropriate
reliance. HUMAN FACTORS, 46:50–80, 2004.

[71] Lauro Didier Lins, James T. Klosowski, and Carlos Eduardo Scheidegger. Nanocubes for
real-time exploration of spatiotemporal datasets. IEEE Transactions on Visualization
and Computer Graphics, 2013.

175

[72] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. immens: Real-time visual querying of big
data. EuroVis, 2013.

[73] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. Scalable lineage capture
for debugging disc analytics. In SOCC, pages 17:1–17:15, 2013.

[74] Boon Thau Loo. The Design and Implementation of Declarative Networks. PhD thesis,
EECS Department, University of California, Berkeley, Dec 2006.

[75] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein,
Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative
networking. Commun. ACM, 52(11):87–95, November 2009.

[76] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. Show me: Automatic presentation
for visual analysis. IEEE Transactions on Visualization and Computer Graphics, 2007.

[77] Michael V. Mannino, Paicheng Chu, and Thomas Sager. Statistical profile estimation
in database systems. ACM Computer Surveys, 1988.

[78] Markos Markou and Sameer Singh. Novelty detection: A review - part 1: Statistical
approaches. Signal Processing, 83:2003, 2003.

[79] Alexandra Meliou, Wolfgang Gatterbauer, Suman Nath, and Dan Suciu. Tracing data
errors with view-conditioned causality. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, SIGMOD ’11, pages 505–516, New
York, NY, USA, 2011. ACM.

[80] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. Reverse data management.
PVLDB, 2011.

[81] Alexandra Meliou and Dan Suciu. Tiresias: The database oracle for how-to queries.
In Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12, pages 337–348, New York, NY, USA, 2012. ACM.

[82] P. Missier, N. Paton, and K. Belhajjame. Fine-grained and efficient lineage querying
of collection-based workflow provenance. In EDBT, 2010.

[83] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth,
Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh
Simmhan, Eric Stephan, and Jan Van den Bussche. The open provenance model core
specification (v1.1). Future Gener. Comput. Syst., 27(6):743–756.

[84] Kiran-Kumar Muniswamy-Reddy, Joseph Barillariy, Uri Braun, David A. Holland,
Diana Maclean, Margo Seltzer, and Stephen D. Holland. Layering in provenance-aware
storage systems. Technical Report 04-08, Harvard, 2008.

[85] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo Seltzer.
Provenance-aware storage systems. In NetDB, 2005.

176

[86] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens,
A. Wipat, and C. Wroe. Taverna: lessons in creating a workflow environment for
the life sciences. In Concurrency and Computation: Practice and Experience, pages
1067–1100, 2006.

[87] Aude Oliva and Antonio Torralba. Building the gist of a scene: the role of global image
features in recognition. In Progress in Brain Research, 2006.

[88] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-so-
foreign language for data processing. In SIGMOD, 2008.

[89] Aditya Parameswaran, Neoklis Polyzotis, and Hector Garcia-Molina. Seedb: Visualizing
database queries efficiently. PVLDB, 2014.

[90] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
Technical report, W3C, 2006.

[91] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[92] Sudeepa Roy and Dan Suciu. A formal approach to finding explanations for database
queries. In SIGMOD Conference, pages 1579–1590, 2014.

[93] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques
in bioinformatics. Bioinformatics, 23(19):2507–2517, September 2007.

[94] Andrea Saltelli. The critique of modelling and sensitivity analysis in the scientific
discourse. an overview of good practices. TAUC, October 2006.

[95] Andrea Saltelli, Karen Chan, E Marian Scott, et al. Sensitivity analysis, volume 134.
Wiley New York, 2000.

[96] Sunita Sarawagi. Explaining differences in multidimensional aggregates. In VLDB,
1999.

[97] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven exploration
of olap data cubes. In EDBT, 1998.

[98] Sunita Sarawagi and Gayatri Sathe. i3: Intelligent, interactive investigaton of olap
data cubes. In SIGMOD, 2000.

[99] Gayatri Sathe and Sunita Sarawagi. Intelligent rollups in multidimensional olap data.
In VLDB, 2001.

[100] Arvind Satyanarayan and Jeffrey Heer. Lyra: An interactive visualization design
environment. EuroVis, 2014. http://idl.cs.washington.edu/projects/lyra/.

[101] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In SIGMOD, 1979.

177

http://idl.cs.washington.edu/projects/lyra/

[102] Chris Stolte and Pat Hanrahan. Polaris: A system for query, analysis and visualization
of multi-dimensional relational databases. InfoVis, 2002.

[103] Michael Stonebraker, Jacek Becla, David J. DeWitt, Kian-Tat Lim, David Maier,
Oliver Ratzesberger, and Stanley B. Zdonik. Requirements for science data bases and
SciDB. In CIDR, 2009.

[104] Michael Stonebraker, Jacek Becla, David J. DeWitt, Kian-Tat Lim, David Maier,
Oliver Ratzesberger, and Stanley B. Zdonik. Requirements for science data bases
and scidb. In CIDR 2009, Fourth Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 4-7, 2009, Online Proceedings, 2009.

[105] Pablo Tamayo, Yoon-Jae Cho, Aviad Tsherniak, Heidi Greulich, et al. Predicting
relapse in patients with medulloblastoma by integrating evidence from clinical and
genomic features. Journal of Clinical Oncology, page 29:1415âĂŞ1423, 2011.

[106] Jenifer Tidwell. Designing interfaces. " O’Reilly Media, Inc.", 2010.

[107] Quoc Trung Tran and Chee-Yong Chan. How to conquer why-not questions. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 15–26, New York, NY, USA, 2010. ACM.

[108] Chris Weaver. Building highly-coordinated visualizations in improvise. In INFOVIS,
2004.

[109] Richard Wesley, Matthew Eldridge, and Pawel T. Terlecki. An analytic data engine
for visualization in tableau. In SIGMOD, 2011.

[110] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

[111] Hadley Wickham. ggplot2. ggplot2.org.

[112] Hadley Wickham. Bin-summarise-smooth: a framework for visualising large data.
Technical report, had.co.nz, 2013.

[113] Jennifer Widom. Trio: A system for integrated management of data, accuracy, and
lineage. Technical report, Stanford, 2004.

[114] Leland Wilkinson. The Grammar of Graphics (Statistics and Computing). Springer-
Verlag New York, Inc., 2005.

[115] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. Strategies for crowdsourcing
social data analysis. In CHI, 2012.

[116] A. Woodruff and M. Stonebraker. Supporting fine-grained data lineage in a database
visualization environment. In ICDE, 1997.

[117] Allison Woodruff and Michael Stonebraker. Buffering of intermediate results in dataflow
diagrams. In ISVL, 1995.

178

ggplot2.org

[118] Eugene Wu, Samuel Madden, and Michael Stonebraker. Subzero: a fine-grained lineage
system for scientific databases. In ICDE, 2013.

[119] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and Boon Thau
Loo. Diagnosing missing events in distributed systems with negative provenance. In
SIGCOMM, pages 383–394, 2014.

[120] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Ku-
mar Gunda, and Jon Currey. Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language. In OSDI, 2008.

[121] Peter Zadrozny and Raghu Kodali. Big Data Analytics Using Splunk. Apress, Berkeley,
CA, 2013.

[122] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,
Berkeley, CA, USA, 2010. USENIX Association.

[123] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information flow explicit in histar. In OSDI, pages 263–278, 2006.

[124] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun
Mao. Efficient querying and maintenance of network provenance at internet-scale. In
SIGMOD, pages 615–626. ACM, 2010.

[125] Moshé M. Zloof. Query by example. In American Federation of Information Processing
Societies, pages 431–438, 1975.

[126] Moshe M. Zloof. Query-by-example: A data base language. IBM systems Journal,
16(4):324–343, 1977.

179

	Introduction
	Example
	A Solution Sketch
	Specify Anomalies
	Backwards Lineage
	Generate Explanations
	Interface Integration

	Dissertation Contributions
	High-throughput Provenance System
	Novel Algorithms for Outlier Explanation
	Interactive System for Exploring Data
	Integrated Data and Visualization Management System

	A Brief Lineage Primer
	Provenance and Lineage Background
	Provenance
	Lineage
	Provenance and Lineage Terminology
	Application Defined Semantics

	Workflow Data and Execution Model
	Data Model
	Execution Model

	Provenance Data and Query Model
	Provenance Data Model
	Provenance Query Model

	Lineage Data and Query Model
	Lineage Data Model
	Lineage Query Model

	High-throughput Lineage
	Introduction
	Challenges With Existing Approaches
	Contributions and Chapter Roadmap

	Scientific Data Processing
	Scientific Workflow Properties
	Locality

	Why Scientific Data Processing?
	Throughput
	User Defined Operators
	Generality

	Use Cases
	Astronomy
	Genomics Prediction

	Architecture
	Lineage Representations
	Cell-level Lineage
	Black-box Lineage
	Region Lineage

	Lineage API
	Basic Operator Structure
	Lineage Representations
	Full Lineage
	Mapping Lineage
	Payload Lineage
	Composite Lineage

	Operator Re-execution
	Selective Re-execution

	Implementation
	Runtime
	Encoder
	FullMany
	FullOne
	PayMany and PayOne
	Alternative Approaches

	Lineage and Storage Strategy
	Query Execution
	Entire Array Optimization

	Lineage Strategy Optimizer
	Query-time Optimizer

	Experiments
	Astronomy Benchmark
	Overhead
	Query Performance

	Genomics Benchmark
	Query-Time Optimizer
	Lineage Strategy Optimizer

	Microbenchmarks
	Experiment Setup
	Overhead
	Query Performance

	Discussion and Future Directions
	Generality to Science Applications
	Generality to Data Applications
	Physical Data Independence
	System Design and Lineage API
	Payload Lineage

	Further Performance Opportunities
	Selective Lineage
	Approximate Lineage

	Lineage Semantics
	Using Lineage

	Conclusion

	Explaining Visualization Outliers
	Introduction
	Problem Overview
	Backwards provenance
	Responsible subset
	Predicate generation

	Contributions and Chapter Roadmap

	Motivation and Use Cases
	Sensor Data
	Medical Cost Analysis
	Fault Analysis
	Election Campaign Expenses
	Extending Provenance Functionality

	Problem Setup
	Formalizing Influence
	Basic Definition
	Error Description
	C Hyperparameter
	Hold-out Result
	Multiple Results
	Notational Shorthands
	Influential Predicates Problem
	Why is This Problem Hard?

	Assumptions
	Group-by Assumption
	Subquery Assumption
	Join Assumption

	Basic Architecture
	Scorpion Architecture
	Naive Partitioner (NAIVE)
	Basic Merger

	Query and Aggregation Properties
	Incrementally Removable
	Example
	Definition
	Application

	Independent
	Definition
	Example

	Anti-monotonic

	Partitioning Algorithms
	Decision Tree (DT) Partitioner
	Single Recursive Partitioning
	Stopping Condition
	Sampling
	Multi- Recursive Partitioning
	Synchronizing Outlier and Hold-out Partitioning

	Bottom-Up (MC) Partitioner
	Subspace Clustering
	Major Modifications

	Merger Optimizations
	Basic Optimizations
	Approximate Scorer
	Reducing Expandable Predicates

	Single-pass Merging Algorithm
	Preliminaries
	Algorithm

	Dimensionality Reduction
	Experimental Setup
	Datasets
	Synthetic Dataset (SYNTH)
	Intel Dataset (INTEL)
	Campaign Dataset (EXPENSE)

	Methodology

	Synthetic Dataset Experiments
	Naive Algorithm
	Comparing Algorithms
	Caching Optimization

	Real-World Datasets
	Intel Dataset
	Campaign Expenses Dataset

	Conclusion

	Exploratory & Explanatory Visualization
	Basic DBWipes Interface
	Faceting Interface
	Specifying Filters
	Toggling Negation
	Permanent Filters

	Scorpion Interface
	Implementation
	Experimental Setup
	Participants
	Experimental Procedures
	Task Specifications
	Queries
	Datasets

	Task Interface

	Quantitative Results
	Scorpion Reduces Analysis Times
	Scorpion Improves Answer Quality
	Self-Rated Qualitative Results
	Strategies for Mining Explanations
	Manual Strategies
	Strategies Using Scorpion
	Predicate Evaluation
	User Confidence

	Conclusion

	A Data Visualization Management System
	Introduction
	Provenance and Lineage Tracking
	Missed Optimization Opportunities
	Redundant Implementation
	Memory Constraints
	A Clean-slate Approach

	Overview and Running Example
	Logical Visualization Plan
	Syntax Overview
	Operator classes
	data
	aesmap
	facet
	stat
	scale
	geom
	pos
	layer

	Running Example

	Data and Execution model
	Physical Visualization Plan
	facet
	aesmap
	stat and pos
	scales
	geom
	layer
	Rendering Operators
	Discussion

	Implementation
	Operator Implementations
	Usage
	Interaction
	Optimizer
	Provenance
	Fine Tuning

	Benefits of a DVMS
	Visualization Features
	Lineage-based Interaction
	Visualization Estimation and Steering
	Rich Contextual Recommendations
	Result analysis

	Query Execution
	Rendering Placement
	Psychophysical Approximation
	Visualization Materialization

	Conclusions

	Related Work
	Data Visualization Systems
	Provenance Management Systems
	Workflow Lineage
	Database Lineage
	Provenace in Other Systems

	Outlier Explanation
	Sensitivity Analysis
	Outlier Detection
	Result Explanation
	Why Explanation
	Query Transformation
	General Explanation
	Domain Specific Algorithms

	Conclusion

