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Abstract— Data lineage is a key component of provenance
that helps scientists track and query relationships between input
and output data. While current systems readily support lineage
relationships at the file or data array level, finer-grained support
at an array-cell level is impractical due to the lack of support
for user defined operators and the high runtime and storage
overhead to store such lineage.

We interviewed scientists in several domains to identify a set
of common semantics that can be leveraged to efficiently store
fine-grained lineage. We use the insights to define lineage repre-
sentations that efficiently capture common locality properties in
the lineage data, and a set of APIs so operator developers can
easily export lineage information from user defined operators.
Finally, we introduce two benchmarks derived from astronomy
and genomics, and show that our techniques can reduce lineage
query costs by up to 10× while incuring substantially less impact
on workflow runtime and storage.

I. INTRODUCTION

Many scientific applications are naturally expressed as a

workflow that comprises a sequence of operations applied to

raw input data to produce an output dataset or visualization.

Like database queries, such workflows can be quite complex,

consisting up to hundreds of operations [1] whose parameters

or inputs vary from one run to another.

Scientists record and query provenance – metadata that de-

scribes the processes, environment and relationships between

input and output data arrays – to ascertain data quality, audit

and debug workflows, and more generally understand how the

output data came to be. A key component of provenance, data

lineage, identifies how input data elements are related to output

data elements and is integral to debugging workflows. For

example, scientists need to be able to work backward from

the output to identify the sources of an error given erroneous

or suspicious output results. Once the source of the error is

identified, the scientist will then often want to identify derived

downstream data elements that depend on the erroneous value

so he can inspect and possibly correct those outputs.

In this paper, we describe the design of a fine-grained

lineage tracking and querying system for array-oriented sci-

entific workflows. We assume a data and execution model

similar to SciDB [2]. We chose this because it provides

a closed execution environment that can capture all of the

lineage information, and because it is specifically designed for

scientific data processing (scientists typically use RDBMSes

to manage metadata and do data processing outside of the

database). The system allows scientists to perform exploratory

workflow debugging by executing a series of data lineage

queries that walk backward to identify the specific cells in

the input arrays on which a given output cell depends and that

walk forward to find the output cells that a particular input

cell influenced. Such a system must manage input to output

relationships at a fine-grained array-cell level.

Prior work in data lineage tracking systems has largely been

limited to coarse-grained metadata tracking [3], [4], which

stores relationships at the file or relational table level. Fine-

grained lineage tracks relationships at the array cell or tuple

level. The typical approach, popularized by Trio [5], which

we call cell-level lineage, eagerly materializes the identifiers

of the input data records (e.g., tuples or array cells) that

each output record depends on, and uses it to directly answer

backward lineage queries. An alternative, which we call black-

box lineage, simply records the input and output datasets and

runtime parameters of each operator as it is executed, and

materializes the lineage at lineage query time by re-running

relevant operators in a tracing mode.

Unfortunately, both techniques are insufficient in scientific

applications for two reasons. First, scientific applications make

heavy use of user defined functions (UDFs), whose semantics

are opaque to the lineage system. Existing approaches con-

servatively assume that every output cell of a UDF depends

on every input cell, which limits the utility of a fine-grained

lineage system because it tracks a large amount of information

without providing any insight into which inputs actually con-

tributed to a given output. This necessitates proper APIs so that

UDF designers can expose fine-grained lineage information

and operator semantics to the lineage system.

Second, neither black-box only nor cell-level only tech-

niques are sufficient for many applications. Scientific work-

flows consume data arrays that regularly contain millions of

cells, while generating complex relationships between groups

of input and output cells. Storing cell-level lineage can avoid

re-running some computationally intensive operators (e.g., an

image processing operator that detects a small number of stars

in telescope imagery), but needs enormous amounts of storage

if every output depends on every input (e.g., a matrix sum

operation) – it may be preferable to recompute the lineage

at query time. In addition, applications such as LSST1 are

often subject to limitations that only allow them to dedicate

1http://lsst.org



a small percentage of storage to lineage operations. Ideally,

lineage systems would support a hybrid of the two approaches

and take user constraints into account when deciding which

operators to store lineage for.

This paper seeks to address both challenges. We interviewed

scientists from several domains to understand their data pro-

cessing workflows and lineage needs and used the results to

design a science-oriented data lineage system. We introduce

Region Lineage, which exploits locality properties prevalent in

the scientific operators we encountered. It addresses common

relationships between regions of input and output cells by

storing grouped or summary information rather than individual

pairs of input and output cells. We developed a lineage API

that supports black-box lineage as well as Region Lineage,

which subsumes cell-level lineage. Programmers can also

specify forward/backward Mapping Functions for an operator

to directly compute the forward/backward lineage solely from

input/output cell coordinates and operator arguments; we im-

plemented these for many common matrix and statistical func-

tions. We also developed a hybrid lineage storage system that

allows users to explicitly trade-off storage space for lineage

query performance using an optimization framework. Finally,

we introduce two end-to-end scientific lineage benchmarks.

As mentioned earlier, the system prototype, SubZero, is

implemented in the context of the SciDB model. SciDB

stores multi-dimensional arrays and executes database queries

composed of built-in and user-defined operators (UDFs) that

are compiled into workflows. Given a set of user-specified

storage constraints, SubZero uses an optimization framework

to choose the optimal type of lineage (black box, or one of

several new types we propose) for each SciDB operator that

minimizes lineage query costs while respecting user storage

constraints.

A summary of our contributions include:

1) The notion of region lineage, which SubZero uses to

efficiently store and query lineage data from scientific

applications. We also introduce several efficient repre-

sentations and encoding schemes that each have different

overhead and query performance trade offs.

2) A lineage API that operator developers can use to expose

lineage from user defined operators, including the spec-

ification of mapping functions for many of the built in

SciDB operators.

3) A unified storage model for mapping functions, region

and cell-level lineage, and black-box lineage.

4) An optimization framework which picks an optimal mix-

ture of black-box and region lineage to maximize query

performance within user defined constraints.

5) A performance evaluation of our approach on end-to-

end astronomy and genomics benchmarks. The astronomy

benchmark, which is computationally intensive but ex-

hibits high locality, benefits from efficient representations.

Compared to cell-level and black-box lineage, SubZero

reduces storage overhead by nearly 70× and speeds query

performance by almost 255×. The genomics benchmark

highlights the need for, and benefits of, using an optimizer

to pick the storage layout, which improves query perfor-

mance by 2–3× while staying within user constraints.

The next section describes our motivating use cases in more

detail. It is followed by a high level system architecture and

details of the rest of the system.

II. USE CASES

We developed two benchmark applications after discussions

with environmental scientists, astronomists, and geneticists.

The first is an image processing benchmark developed with

scientists at the Large Synoptic Survey Telescope (LSST)

project. It is very similar to environmental science require-

ments, so they are combined together. The second was devel-

oped with geneticists at the Broad Institute2. Each benchmark

consists of a workflow description, a dataset, and lineage

queries. We used the benchmarks to design the optimizations

described in the paper. This section will briefly describe each

benchmark’s scientific application, the types of desired lineage

queries, and application-specific insights.

A. Astronomy

The Large Synaptic Survey Telescope (LSST) is a wide

angle telescope slated to begin operation in Fall 2015. A key

challenge in processing telescope images is filtering out high

energy particles (cosmic rays) that create abnormally bright

pixels in the resulting image, which can be mistaken for stars.

The telescope compensates by taking two consecutive pictures

of the same piece of the sky and removing the cosmic rays

in software. The LSST image processing workflow (Figure 1)

takes two images as input and outputs an annotated image

that labels each pixel with the celestial body it belongs to. It

first cleans and detects cosmic rays in each image separately,

then creates a single composite, cosmic-ray-free, image that

is used to detect celestial bodies. There are 22 SciDB built-

in operators (blue solid boxes) that perform common matrix

operations, such as convolution, and four UDFs (red dotted

boxes labeled A-D). The UDFs A and B output cosmic-ray

masks for each of the images. After the images are subse-

quently merged, C removes cosmic-rays from the composite

image, and D detects stars from the cleaned image.

The LSST scientists are interested in three types of queries.

The first picks a star in the output image and traces the lineage

back to the initial input image to detect bad input pixels. The

latter two queries select a region of output (or input) pixels and

trace the pixels backward (or forward) through a subset of the

workflow to identify a single faulty operator. As an example,

suppose the operator that computes the mean brightness of the

image generated an anomalously high value due to a few bad

pixel, which led to further mis-calculations. The astronomer

might work backward from those calculations, identify the

input pixels that contributed to them, and filter out those pixels

that appear excessively bright.

Both the LSST and environmental scientists described work-

loads where the majority of the data processing code computes

2http://www.broadinstitute.org/



output pixels using input pixels within a small distance from

the corresponding coordinate of the output pixel. These regions

may be constant, pre-defined values, or easily computed from

a small amount of additional metadata. For example, a pixel in

the mask produced by cosmic ray detection (CRD) is set if the

related input pixel is a cosmic ray, and depends on neighboring

input cells within 3 pixels. Otherwise, it only depends on the

related input pixel. They also felt that it is sufficient for lineage

queries to return a superset of the exact lineage. Although we

do not take advantage of this insight, this suggests future work

in lossy compression techniques.

Fig. 1. Summary diagram of LSST workflow. Each solid rectangle is a
SciDB native operator while the red dotted rectangles are UDFs.

B. Genomics Prediction

We have also been working with researchers at the Broad

Institute on a genomics benchmark related to predicting recur-

rences of medulloblastoma in patients. Medulloblastoma is a

form of cancer that spawns brain tumors that spread through

the cerebrospinal fluid. Pablo et. al [6] have identified a set of

patient features that help predict relapse in medulloblastoma

patients that have been treated. The features include histology,

gene expression levels, and the existence of genetic abnormal-

ities. The workflow (Figure 2) is a two-step process that first

takes a training patient-feature matrix and outputs a Bayesian

model. Then it uses the model to predict relapse in a test

patient-feature matrix. The model computes how much each

feature value contributes to the likelihood of patient relapse.

The ten built-in operators (solid blue boxes) are simple matrix

transformations. The remaining UDFs extract a subset of the

input arrays (E,G), compute the model (F), and predict the

relapse probability (H).

The model is designed to be used by clinicians through a

visualization that generates lineage queries. The first query

picks a relapse prediction and traces its lineage back to the

training matrix to find supporting input data. The second query

picks a feature from the model and traces it back to the training

matrix to find the contributing input values. The third query

points at a set of training values and traces them forward to

the model, while the last query traces them to the end of the

workflow to find the predictions they affected.

The genomics benchmark can devote up-front storage and

runtime overhead to ensure fast query execution because it

is an interactive visualization. Although this is application

specific, it suggests that scientific applications have a wide

range of storage and runtime overhead constraints.

III. ARCHITECTURE

SubZero records and stores lineage data at workflow runtime

and uses it to efficiently execute lineage queries. The input to

Fig. 2. Simplified diagram of genomics workflow. Each solid rectangle is a
SciDB native operator while the red dotted rectangles are UDFs.

Fig. 3. The SubZero architecture.

SubZero is a workflow specification (the graph in Workflow

Executor), constraints on the amount of storage that can

be devoted to lineage tracking, and a sample lineage query

workload that the user expects to run. SubZero optimally

decides the type of lineage that each operator in the workflow

will generate ( the lineage strategy) in order to maximize the

performance of the query workload performance.

Figure 3 shows the system architecture. The solid and

dashed arrows indicate the control and data flow, respec-

tively. Users interact with SubZero by defining and executing

workflows (Workflow Executor), specifying constraints to the

Optimizer, and running lineage queries (Query Executor). The

operators in the workflow specify a list of the types of lineage

(described in Section V) that each operator can generate,

which defines the set of optimization possibilities.

Each operator initially generates black-box lineage (i.e., just

records the names of the inputs it processes) but over time

changes its strategy through optimization. As operators process

data, they send lineage to the Runtime, which uses the Encoder

to serialize the lineage before writing it to Operator Specific

Datastores. The Runtime may also send lineage and other

statistics to the Optimizer, which calculates statistics such as

the amount of lineage that each operator generates. SubZero

periodically runs the Optimizer, which uses an Integer Pro-

gramming Solver to compute the new lineage strategy. On

the right side, the Query Executor compiles lineage queries

into query plans that join the query with lineage data. The

Executor requests lineage from the Runtime, which reads and

decodes stored lineage, uses the Re-executor to re-run the

operators, and sends statistics (e.g., query fanout and fanin)

to the optimizer to refine future optimizations.

Given this overview, we now describe the data model and

structure of lineage queries (Section IV), the different types of



lineage the system can record (Section V), the functionality of

the Runtime, Encoder, and Query Executor (Section VI), and

finally the optimizer in Section VII.

IV. DATA, LINEAGE AND QUERY MODEL

In this section, we describe the representation and notation

of lineage data and queries in SubZero.

SubZero is designed to work with a workflow executor

system that applies a fixed sequence of operators to some set of

inputs. Each operator operates on one or more input objects

(e.g., tables or arrays), and produces a single output object.

Formally, we say an operator P takes as input n objects,

I1P , ..., I
n
P , and outputs a single object, OP .

Multiple operators are composed together to form a work-

flow, described by a workflow specification, which is a directed

acyclic graph W = (N,E), where N is the set of operators,

and e = (OP , IP
′

i ) ∈ E specifies that the output of P forms

the i’th input to the operator P ′. An instance of W , Wj ,

executes the workflow on a specific dataset. Each operator

runs when all of its inputs are available.

The data follows the SciDB data model, which processes

multi-dimensional arrays. A combination of values along each

dimension, termed a coordinate, uniquely identifies a cell.

Each cell in an array has the same schema, and consists of

one or more named, typed fields. SciDB is “no overwrite,”

meaning that intermediate results produced as the output of an

operator are always stored persistently, and each update to an

object creates a new, persistent version. SubZero stores lineage

information with each version to speed up lineage queries.

Our notion of backward lineage is defined as a subset of the

inputs that will reproduce the same output value if the operator

is re-run on its lineage. For example, the lineage of an output

cell of Matrix Multiply are all cells of the corresponding row

and column in the input arrays – even if some are empty.

Forward lineage is defined as a subset, C, of the outputs such

that the backward lineage of C contains the input cells. The

exact semantics for UDFs are ulitmately controlled by the

developer.

SubZero supports three types of lineage: black box, cell-

level, and region lineage. As a workflow executes, lineage is

generated on an operator-by-operator basis, depending on the

types of lineage that each operator is instrumented to support

and the materialization decisions made by the optimizer.

We have instrumented SciDB’s built-in operators to generate

lineage mappings from inputs to outputs and provide an API

for UDF designers to expose these relationships. If the API

is not used, then SubZero assumes an all-to-all relationship

between the cells of the input arrays and cells of the output

array.

a) Black-box lineage: SubZero does not require ad-

ditional resources to store black-box lineage because, like

SciDB, our workflow executor records intermediate results as

well as input and output array versions as peristent, named

objects. These are sufficient to re-run any previously executed

operator from any point in the workflow.

b) Cell-level lineage: Cell-level lineage models the re-
lationships between an output cell and each input cell that
generated it 3 as a set of pairs of input and output cells:

{(out, in)|out ∈ OP ∧ in ∈ ∪i∈[1,n]I
i
P }

Here, out ∈ OP means that out is a single cell contained in

the output array OP . in refers to a single cell in one of the

input arrays.
c) Region lineage: Region lineage models lineage as a

set of region pairs. Each region pair describes an all-to-all
lineage relationship between a set of output cells, outcells,
and a set of input cells, incellsi, in each input array, IiP :

{(outcells, incells1, ..., incellsn)|outcells ⊆ OP ∧ incellsi ⊆ IiP }

Region lineage is more than a short hand; scientific applica-

tions often exhibit locality and generate multiple output cells

from the same set of input cells, which can be represented

by a single region pair. For example, the LSST star detection

operator finds clusters of adjacent bright pixels and generates

an array that labels each pixel with the star that it belongs

to. Every output pixel labeled Star X depends on all of the

input pixels in the Star X region. Automatically tracking such

relationships at the cell level is particularly expensive, so

region lineage is a generalization of cell-level lineage that

makes this relationship explicit. For this reason, later sections

will exclusively discuss region pairs.
Users execute a lineage query by specifying the coordinates

of an initial set of query cells, C, in a starting array, and a
path of operators (P1 . . . Pm) to trace through the workflow:

R = execute query(C, ((P1, idx1), ..., (Pm, idxm)))

Here, the indexes (idx1 . . . idxm) are used to disambiguate

which input of a multi-input operator that the query path

traverses.

Depending on the order of operators in the query path,

SubZero recognizes the query as a forward lineage query

or backward lineage query. A forward lineage query defines

a path from some ancestor operator P1 to some descendent

operator Pm. The output of an operator Pi−1 is the idxi’th

input of the next operator, Pi. The query cells C are a subset

of P1’s idx1’th input array, C ⊆ Iidx1

P1
.

A backward lineage query reverses this process, defining

a path from some descendent operator, P1 that terminates at

some ancestor operator, Pm. The output of an operator, Pi+1

is the idxi’th input of the previous operator, Pi, and the query

cells C are a subset of P1’s output array, C ⊆ OP1
. The

query results are the coordinates of the cells R ⊆ OPm
or

R ⊆ Iidxm

Pm
, for forward and backward queries, respectively.

V. LINEAGE API AND STORAGE MODEL

SubZero allows developers to write operators that efficiently

represent and store lineage. This section describes several

modes of region lineage, and an API that UDF developers

can use to generate lineage from within the operators. We

also introduce a mechanism to control the modes of lineage

3Although we model and refer to lineage as a mapping between input
and output cells, in the SubZero implementation we store these mappings as
references to physical cell coordinates.



TABLE I

RUNTIME AND OPERATOR METHODS

API Method Description

System API Calls

lwrite(outcells, incells1, ...,incellsn) API to store lineage relationship.

lwrite(outcells, payload) API to store small binary payload
instead of input cells. Called by
payload operators.

Operator Methods

run(input-1,...,input-n,cur modes) Execute the operator, generating
lineage types in cur modes ⊆ {Full,
Map, Pay, Comp,Blackbox}

mapb(outcell, i) Computes the input cells in inputi
that contribute to outcell.

mapf (incell, i) Computes the output cells that depend
on incell ∈ inputi.

mapp(outcell, payload, i) Computes the input cells in inputi
that contribute to outcell, has access
to payload.

supported modes() Returns the lineage modes C ⊆ {Full,
Map, Pay, Comp,Blackbox}
that the operator can generate.

that an operator generates. Finally, we describe how SubZero

re-executes black-box operators during a lineage query. Table

I summarizes the API calls and operator methods that are

introduced in this section.

Before describing the different lineage storage methods, we

illustrate the basic structure of an operator:

class OpName:

def run(input-1,...,input-n,cur_modes):

/* Process the inputs, emit the output */

/* Record lineage modes specified

in cur_modes */

def supported_modes():

/* Return the lineage modes the

operator supports */

Each operator implements a run() method, which is called

when inputs are available to be processed. It is passed a list

of lineage modes it should output in the cur modes argument;

it writes out lineage data using the lwrite() method described

below. The developer specifies the modes that the operator

supports (and that the runtime will consider) by overriding

the supported modes() method. If the developer does not

override supported modes(), SubZero assumes an all-to-all

relationship between the inputs and outputs. Otherwise, the

operator automatically supports black-box lineage.

For ease of explanation, this section is described in the

context of the LSST operator CRD (cosmic ray detection,

depicted as A and B in Figure 1) that finds pixels containing

cosmic rays in a single image, and outputs an array of the

same size. If a pixel contains a cosmic ray, the corresponding

cell in the output is set to 1, and the output cell depends on the

49 neighboring pixels within a 3 pixel radius. Otherwise the

output cell is set to 0, and only depends on the corresponding

input pixel. A region pair is denoted (outcells, incells).

A. Lineage Modes

SubZero supports four modes of region lineage (Full, Map,

Pay, Comp), and one mode of black-box lineage (Blackbox).

cur modes is set to Blackbox when the operator does not need

to generate any pairs (because black box lineage is always

in use). Full lineage explicitly stores all region pairs, and the

other lineage modes reduce the amount of lineage that is stored

by partially computing lineage at query time using developer

defined mapping functions. The following sections describe

the modes in more detail.

1) Full Lineage: Full lineage (Full) explicitly represents

and stores all region pairs. It is straightforward to instrument

any operator to generate full lineage. The developer simply

writes code that generates region pairs and uses lwrite() to

store the pairs. For example, in the following CRD pseu-

docode, if cur modes contains Full, the code iterates through

each cell in the output, calculates the lineage, and calls

lwrite() with lists of cell coordinates. Note that if Full is not

specified, the operator can avoid running the lineage related

code.

def run(image, cur_modes):

...

if Full ∈ cur_modes:

for each cell in output:

if cell == 1:

neighs = get_neighbor_coords(cell)

lwrite([cell.coord], neighs)

else:

lwrite([cell.coord], [cell.coord])

Although this lineage mode accurately records the lineage

data, it is potentially very expensive to both generate and

store. We have identified several widely applicable operator

properties that allow the operators to generate more efficient

modes of lineage, which we describe next.

2) Mapping Lineage: Mapping lineage (Map) compactly

represents an operator’s lineage using a pair of mapping

functions. Many operators such as matrix transpose exhibit

a fixed execution structure that does not depend on the input

cell values. These operators, called mapping operators, can

compute forward and backward lineage from a cell’s coordi-

nates and metadata (e.g., input and output array sizes) and

do not need to access array data values. This is a valuable

property because mapping operators do not incur runtime and

storage overhead. For example, one-to-one operators, such

as matrix addition, are mapping operators because an output

cell only depends on the input cell at the same coordinate,

regardless of the value. Developers implement a pair of

mapping functions, mapf (cell, i)/mapb(cell, i), that calculate

the forward/backward lineage of an input/output cell’s coordi-

nates, with respect to the i’th input array. For example, a 2D

transpose operator would implement the following functions:

def map_b((x,y), i): def map_f((x,y), i):

return [(y,x)] return [(y,x)]

Most SciDB operators (e.g., matrix multiply, join, transpose,

convolution) are mapping operators, and we have implemented

their forward and backward mapping functions. Mapping oper-

ators in the astronomy and genomics benchmarks are depicted

as solid boxes (Figures 1 and 2).

3) Payload Lineage: Rather than storing the input cells

in each region pair, payload lineage (Pay) stores a small

amount of data (a payload), and recomputes the lineage

using a payload-aware mapping function (mapp()). Unlike

mapping lineage, the mapping function has access to the



user-stored binary payload. This mode is particularly useful

when the operator has high fanin and the payload is very

small. For example, suppose that the radius of neighboring

pixels that a cosmic ray pixel depends on increases with

brightness, then payload lineage only stores the brightness

insteall of the input cell coordinates. (Payload operators)

call lwrite(outcells, payload) to pass in a list of output

cell coordinates and a binary blob, and define a payload

function, mapp(outcell, payload, i), that directly computes

the backward lineage of outcell ∈ outcells from the outcell
coordinate and the payload. The result are input cells in the

i’th input array. As with mapping functions, payload lineage

does not need to access array data values. The following

pseudocode stores radius values instead of input cells:

def run(image,cur_modes):

...

if PAY ∈ cur_modes:

for each cell in output:

if cell == 1:

lwrite([cell.coord], ’3’)

else:

lwrite([cell.coord], ’0’)

def map_p((x,y), payload, i):

return get_neighbors((x,y), int(payload))

In the above implementation, each region pair stores the

output cells and an additional argument that represents the

radius, as opposed to the neighboring input cells. When a back-

ward lineage query is executed, SubZero retrieves the (outcells,

payload) pairs that intersect with the query and executes mapp
on each pair. This approach is particularly powerful because

the payload can store arbitrary data – anything from array data

values to lineage predicates [7]. Operators D to G in the two

benchmarks (Figures 1 and 2) are payload operators.

Note that payload functions are designed to optimize exe-

cution of backward lineage queries. While SubZero can index

the input cells in full lineage, the payload is a binary blob that

cannot be easily indexed. A forward query must iterate through

each (outcells, payload) pair and compute the input cells using

mapp before it can be compared to the query coordinates.

4) Composite Lineage: Composite lineage (Comp) com-

bines mapping and payload lineage. The mapping function

defines the default relationship between input and output cells,

and results of the payload function overwrite the default lin-

eage if specified. For example, CRD can represent the default

relationship – each output cell depends on the corresponding

input cell in the same coordinate – using a mapping function,

and write payload lineage for the cosmic ray pixels:

def run(image,cur_modes):

...

if COMP ∈ cur_modes:

for each cell in output:

if cell == 1:

lwrite([cell.coord], 3)

// else map_b defines default behavior

def map_p((x,y), radius, i):

return get_neighbors((x,y), radius)

def map_b((x,y), i):

return [(x,y)]

Composite operators can avoid storing lineage for a sig-

nificant fraction of the output cells. Although it is similar

to payload lineage in that the payload cannot be indexed to

optimize forward queries, the amount of payload lineage that

is stored may be small enough that iterating through the small

number of (outcells, payload) pairs is efficient. Operators A,B

and C in the astronomy benchmark (Figure 1) are composite

operators.

B. Supporting Operator Re-execution

An operator stores black-box lineage when cur modes
equals Blackbox. When SubZero executes a lineage query

on an operator that stored black-box lineage, the operator

is re-executed in tracing mode. When the operator is re-run

at lineage query time, SubZero passes cur modes = Full,
which causes the operator to perform lwrite() calls. The

arguments to these calls are sent to the query executor.

Rather than re-executing the operator on the full input

arrays, SubZero could also reduce the size of the inputs by

applying bounding box predicates prior to re-execution. The

predicates would reduce both the amount of lineage that needs

to be stored and the amount of data that the operator needs

to re-process. Although we extended both mapping and full

operators to compute and store bounding box predicates, we

did not find it to be a widely useful optimization. During query

execution, SubZero must retrieve the bounding boxes for every

query cell, and either re-execute the operator for each box, or

merge the bounding boxes and re-run the operator using the

merged predicate. Unfortunately, the former approach incurs

an overhead on each execution (to read the input arrays and

apply the predicates) that quickly becomes a significant cost.

In the latter approach, the merged bounding box quickly ex-

pands to encompass the full input array, which is equivalent to

completely re-executing the operator, but incurs the additional

cost to retrieve the predicates. For these reasons, we do not

further consider them here.

VI. IMPLEMENTATION

This section describes the Runtime, Encoder, and Query

Executor components in greater detail.

A. Runtime

In SciDB (and our prototype), we automatically store black-

box lineage by using write-ahead logging, which guarantees

that black-box lineage is written before the array data, and

is “no overwrite” on updates. Region lineage is stored in a

collection of BerkeleyDB hashtable instances. We use Berke-

leyDB to store region lineage to avoid the client-server com-

munication overhead of interacting with traditional DBMSes.

We turn off fsync, logging and concurrency control to avoid

recovery and locking overhead. This is safe because the region

lineage is treated as a cache, and can always be recovered by

re-running operators.

The runtime allocates a new BerkeleyDB database for each

operator instance that stores region lineage. Blocks of region



pairs are buffered in memory, and bulk encoded using the

Encoder. The data in each region pair is stored as a unit

(SubZero does not optimize across region pairs), and the

output and input cells use separate encoding schemes. The

layout can be optimized for backward or forward queries by

respectively storing the output or input cells as the hash key.

On a key collision, the runtime decodes, merges, and re-

encodes the two hash values. The next subsection describes

how the Encoder serializes the region pairs.

B. Encoder

While Section V presented efficient ways to represent region

lineage, SubZero still needs to store cell coordinates, which

can easily be larger than the original data arrays. The Encoder

stores the input and output cells of a region pair (generated by

calls to lwrite()) into one or more hash table entries, specified

by an encoding strategy. We say the encoding strategy is

backward optimized if the output cells are stored in the hash

key, and forward optimized if the hash key contains input cells.

We found that four basic strategies work well for the

operators we encountered. – FullOne and FullMany are

the two strategies to encode full lineage, and PayOne and

PayMany encode payload lineage4.
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Fig. 4. Four examples of encoding strategies

Figure 4 depicts how the backward-optimied implemen-

tation of these strategies encode two output cells with co-

ordinates (0, 1) and (2, 3) that depend on input cells with

coordinates (4, 5) and (6, 7). FullMany uses a single hash

entry with the set of serialized output cells as the key and the

set of input cells as the value (Figure 4.1). Each coordinate is

bitpacked into a single integer if the array is small enough. We

also create an R Tree on the cells in the hash key to quickly

find the entries that intersect with the query. This index uses

the dimensions of the array as its keys and identifies the hash

table entries that contain cells in particular regions. The figure

shows the unserialized versions of the cells for simplicity.

FullMany is most appropriate when the lineage has high

fanout because it only needs to store the output cells once.

If the fanout is low, FullOne more efficiently serializes

and stores each output cell as the hash key of a separate

4We tried a large number of possible strategies and found that complex
encodings (e.g., compute and store the bounding box of a set of cells, C,
along with cells in the bounding box but not in C) incur high encoding costs
without noticeably reduced storage costs. Many are also readily implemented
as payload or composite lineage

hash entry. The hash value stores a reference to a single entry

containing the input cells (Figure 4.2). This implementation

doesn’t need to compute and store bounding box information

and doesn’t need the spatial index because each input cell is

stored separately, so queries execute using direct hash lookups.

For payload lineage, PayMany stores the lineage in a

similar manner as FullMany, but stores the payload as the

hash value (Figure 4.3). PayOne creates a hash entry for

every output cell and stores a duplicate of the payload in each

hash value (Figure 4.4).

The Optimizer picks a lineage strategy that spans the entire

workflow. It picks one or more storage strategies for each

operator. Each storage strategy is fully specified by a lineage

mode (Full, Map, Payload, Composite, or Black-box), encod-

ing strategy, and whether it is forward or backward optimized

(→ or ←). SubZero can use multiple storage strategies to

optimize for different query types.

C. Query Execution

The Query Executor iteratively executes each step in the

lineage query path by joining the lineage with the coordinates

of the query cells, or the intermediate cells generated from

the previous step. The output at each step is a set of cell

coordinates that is compactly stored in an in-memory boolean

array with the same dimensions as the input (backward query)

or output (forward query) array. A bit is set if the intermediate

result contains the corresponding cell. For example, suppose

we have an operator P that takes as input a 1 × 4 array.

Consider a backwards query asking for the lineage of some

output cell C of P . If the result of the query is 1001, this

means that C depends on the first and fourth cell in P ’s input.

We chose the in-memory array because many operators

have large fanin or fanout, and can easily generate several

times more results (due to duplicates) than are unique. De-

duplication avoids wasting storage and saves work. Similarly,

the executor can close an operator early if it detects that all

of the possible cells have been generated.

We also implement an entire array optimization to speed up

queries where all of the bits in the boolean array are set. For

example, this can happen if a backward query traverses several

high-fanin operators or an all-to-all operator such as matrix

inversion. In these cases, calculating the lineage of every query

cell is very expensive and often unnecessary. Many operators

(e.g., matrix multiply or inverse) can safely assume that the

forward (backward) lineage of an entire input (output) array

is the entire output (input) array. This optimization is valuable

when it can be applied – it improved the query performance

of a forward query in the astronomy benchmark that traverses

an all-to-all-operator by 83×.

In general, it is difficult to automatically identify when

the optimization’s assumptions hold. Consider a concatenate

operator that takes two 2D arrays A, B with shapes (1, n) and

(1, m), and produces an (1, n+m) output by concatenating B to

A. The optimization would produce different results, because

A’s forward lineage is only a subset of the output. We currently



rely on the programmer to manually annotate operators where

the optimization can be applied.

VII. LINEAGE STRATEGY OPTIMIZER

Having described the basic storage strategies implemented

in SubZero, we now describe our lineage storage optimizer.

The optimizer’s objective is to choose a set of storage strate-

gies that minimize the cost of executing the workflow while

keeping storage overhead within user-defined constraints. We

formulate the task as an integer programming problem, where

the inputs are a list of operators, strategy pairs, disk overheads,

query cost estimates, and a sample workload that is used to

derive the frequency with which each operator is invoked in

the lineage workload. Additionally, users can manually specify

operator specific strategies prior to running the optimizer.

The formal problem description is stated as:

minx
∑

i pi ∗
(

minj|xij=1 qij

)

+ ǫ ∗
∑

ij(diskij + β ∗ runij) ∗ xij

s.t.
∑

ij diskij ∗ xij ≤ MaxDISK
∑

ij runij ∗ xij ≤ MaxRUNTIME

∀i

(

∑

0≤j<M xij

)

≥ 1

∀i,jxij ∈ {0, 1}

user specified strategies
xij = 1 ∀i,jxij ∈ U

Here, xij = 1 if operator i stores lineage using strategy

j, and 0 otherwise. MaxDISK is the maximum storage

overhead specified by the user; qij , runij , and diskij , are the

average query cost, runtime overhead, and storage overhead

costs for operator i using strategy j as computed by the

cost model. pij is the probability that a lineage query in

the workload accesses operator i, and is computed from the

sample workload. A single operator may store its lineage data

using multiple strategies.

The goal of the objective function is to minimize the cost

of executing the lineage workload, preferring strategies that

use less storage. When an operator uses multiple strategies to

store its lineage, the query processor picks the strategy that

minimizes the query cost. The min statement in the left hand

term picks the best query performance from the strategies that

have been picked (j|xij = 1). The right hand term penalizes

strategies that take excessive disk space or cause runtime

slowdown. β weights runtime against disk overhead, and ǫ
is set to a very small value to break ties. A large ǫ is similar

to reducing MaxDISK or MaxRUNTIME.

We heuristically remove configurations that are clearly

non-optimal, such as strategies that exceed user constraints,

or are not properly indexed for any of the queries in the

workload (e.g., forward optimized when the workload only

contains backward queries). The optimizer also picks mapping

functions over all other classes of lineage.

We solve the ILP problem using the simplex method in

GNU Linear Programming Kit. The solver takes about 1ms to

solve the problem for the benchmarks.

TABLE II

LINEAGE STRATEGIES FOR EXPERIMENTS.

Strategy Description

Astronomy Benchmark

BlackBox All operators store black-box lineage

BlackBoxOpt Like BlackBox, uses mapping lineage for built-in-operators.

FullOne Like BlackBoxOpt, but uses FullOne for UDFs.

FullMany Like FullOne, but uses FullMany for UDFs.

Subzero Like FullOne, but stores composite lineage
using PayOne for UDFs.

Genomics Benchmark

BlackBox UDFs store black-box lineage

FullOne UDFs store backward optimized FullOne

FullMany UDFs store backward optimized FullMany

FullForw UDFs store forward optimized FullOne

FullBoth UDFs store FullForw and FullOne

PayOne UDFs store PayOne

PayMany UDFs store PayMany

PayBoth UDFs store PayOne and FullForw

A. Query-time Optimizer

While the lineage strategy optimizer picks the optimal

lineage strategy, the executor must still pick between accessing

the lineage stored by one of the lineage strategies, or re-

running the operator. The query-time optimizer consults the

cost model using statistics gathered during query execution

and the size of the query result so far to pick the best execution

method. In addition, the optimizer monitors the time to access

the materialized lineage. If it exceeds the cost of re-executing

the operator, SubZero dynamically switches to re-running the

operator. This bounds the worst case performance to 2× the

black-box approach.

VIII. EXPERIMENTS

In the following subsections, we first describe how SubZero

optimizes the storage strategies for the real-world benchmarks

described in Section II, then compare several of our lin-

eage storage techniques with black-box level only techniques.

The astronomy benchmark shows how our region lineage

techniques improve over cell-level and black-box strategies

on an image processing workflow. The genomics benchmark

illustrates the complexity in determining an optimal lineage

strategy and that the the optimizer is able to choose an effective

strategy within user constraints.

Overall, our findings are that:

• An optimal strategy heavily relies on operator properties

such as fanin, and fanout, the specific lineage queries,

and query execution-time optimizations. The difference

between a sub-optimal and optimal strategy can be so

large that an optimizer-based approach is crucial.

• Payload, composite, and mapping lineage are extremely

effective and low overhead techniques that greatly im-

prove query performance, and are applicable across a

number of scientific domains.

• SubZero can improve the LSST benchmark queries by

up to 10× compared to naively storing the region lineage

(similar to what cell-level approaches would do) and up

to 255× faster than black-box lineage. The runtime and

storage overhead of the optimal scheme is up to 30 and



70× lower than cell-level lineage, respectively, and only

1.49 and 1.95× higher than executing the workflow.

• Even though the genomics benchmark executes operators

very quickly, SubZero can find the optimal mix of black-

box and region lineage that scales to the amount of

available storage. SubZero uses a black-box only strategy

when the available storage is small, and switches from

space-efficient to query-optimized encodings with looser

constraints. When the storage constraints are unbounded,

SubZero improves forward queries by over 500× and

backward queries by 2-3×.

The current prototype is written in Python and uses Berke-

leyDB for the persistent store, and libspatialindex for the

spatial index. The microbenchmarks are run on a 2.3 GHz

linux server with 24 GB of RAM, running Ubuntu 2.6.38-13-

server. The benchmarks are run on a 2.3 GHz MacBook Pro

with 8 GB of RAM, a 5400 RPM hard disk, running OS X

10.7.2.

A. Astronomy Benchmark
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Fig. 5. Astronomy Benchmark

In this experiment, we run the Astronomy workflow with

five backward queries and one forward query as described

in Section II-A. The 22 built-in operators are all expressed

as mapping operators and the UDFs consist of one payload

operator that detects celestial bodies and three composite

operators that detect and remove cosmic rays. This workflow

exhibits considerable locality (stars only depend on neighbor-

ing pixels), sparsity (stars are rare and small), and the queries

are primarily backward queries. Each workflow execution

consumes two 512×2000 pixel (8MB) images (provided by

LSST) as input, and we compare the strategies in Table VIII.

Figure 5(a) plots the disk and runtime overhead for each

of the strategies. BlackBox and BlackBoxOpt show the

base cost to execute the workflow and the size of the input

arrays – the goal is to be as close to these bars as possible.

FullOne and FullMany both require considerable storage

space (66×, 53×) because the three cosmic ray operators

generate a region pair for every input and output pixel at the

same coordinates. Similarly, both approaches incur 6× and

44× runtime overhead to serialize and store them. FullMany
must also construct the spatial index on the output cells. The

SubZero optimizer instead picks composite lineage that only

stores payload lineage for the small number of cosmic rays

and stars. This reduces the runtime and disk overheads to

1.49× and 1.95× the workflow inputs. By comparison, this

storage overhead is negligible compared to the cost of storing

the intermediate and final results (which amount to 11.5× the

input size).

Figure 5(b) compares lineage query execution costs. BQ x
and FQ x respectively stand for backward and forward query

x. All of the queries use the entire array optimization described

in Section VI-C whereas FQ0Slow does not. BlackBox must

re-run each operator and takes up to 100 secs per query.

BlackBoxOpt can avoid rerunning the mapping operators,

but still re-runs the computationally intensive UDFs. Storing

region lineage reduces the cost of executing the backward

queries by 34× (FullMany) and 45× (FullOne) on average.

SubZero benefits from executing mapping functions and read-

ing a small amount of lineage data and executes 255× faster on

average. FQ 0 Slow illustrates how the all-to-all optimization

improves the query performance by 83× by avoiding fine-

grained lineage all-together.

B. Genomics Benchmark

In this experiment, we run the genomics workflow and

execute a lineage workload with an equal mix of forward

and backward lineage queries (Section II-B). There are 10

built-in mapping operators, and the 4 UDFs are all payload

operators. In contrast to the astronomy workflow, these UDFs

do not exhibit significant locality, and perform data shuffling

and extraction operations that are not amenable to mapping

functions. In addition, the operators perform simple calcula-

tions, and execute quickly, so there is a less pronounced trade

off between re-executing the workflow and accessing region

lineage. In fact, there are cases where storing lineage actually

degrades the query performance. We were provided a 56×100

matrix of 96 patients and 55 health and genetic features.

Although the dataset is small, future datasets are expected to

come from a larger group of patients, so we constructed larger

datasets by replicating the patient data. The query performance

and overheads scaled linearly with the size of the dataset and

so we report results for the dataset scaled by 100×.

We first show the high variability between different static

strategies (Table VIII) and how the query-time optimizer

(Section VII-A) avoids sub-optimal query execution. We then

show how the SubZero cost based optimizer can identify the

optimal strategy within varying user constraints.

1) Query-Time Optimizer: This experiment compares the

strategies in Table VIII with and without the query-time

optimization described in Section VII-A. Each operator uses
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Fig. 6. Genomics benchmark. Queries run with (dynamic) and without (static)
the query-time optimizer described in Section VII-A.

mapping lineage if possible, and otherwise stores lineage using

the specified strategy. The majority of the UDFs generate

region pairs that contain a single output cell. As mentioned in

previous experiments, payload lineage stores very little binary

data, and incurs less overhead than the full lineage approaches

(Figure 6(a)). Storing both forward and backward-optimized

lineage (PayBoth and FullBoth) requires significantly more

overhead – 8 and 18.5× more space than the input arrays, and

2.8 and 26× runtime slowdown.

Figure 6(b) highlights how query performance can degrade

if the executor blindly joins queries with mismatched in-

dexed lineage (e.g., backward-optimized lineage with forward

queries)5. For example, FullForw degraded backward query

performance by 520×. Interestingly, the BQ1 ran slower

because the query path contains several operators with very

large fanins. This generates so many intermediate results that

performing index lookups on each one is slower than re-

running the operators. Note however, that the forward opti-

mized strategies improved the performance of FQ0 and FQ2

because the fanout is low.

Figure 6(c) shows that the query-time optimizer executes

the queries as fast as, or faster than, BlackBox. In general,

this requires accurate statistics and cost estimation, the op-

timizer limits the query performance degradation to 2× by

5All comparisons are relative to BlackBox
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Fig. 7. Genomics benchmark. SubZeroX has storage constraint X MB

dynamically switching to the BlackBox strategy. Overall, the

backward and forward queries improved by up to 2 and 25×,

respectively.

2) Lineage Strategy Optimizer: The previous section com-

pared many strategies, each with different performance charac-

teristics depending on the operator and query. We now evaluate

the SubZero strategy optimizer on the genomics benchmark.

Figure 7 illustrates that when the user increases storage con-

straints from 1 to 100MB (with unbounded runtime constraint),

the optimizer picks more storage intensive strategies that

are predicted to improve the benchmark queries. SubZero

chooses BlackBox when the constraint is too small, and

stores forward and backward-optimized lineage that benefits

all of the queries when the minimum amount of storage is

available (20MB). Materializing further lineage has dimin-

ishing storage-to-query benefits. SubZero100 uses 50MB to

forward-optimize the UDFs using (MANY,ONE), which

reduces the forward query costs to sub-second costs. This

is because the UDFs have low fanout, so each join in the

query path is a small number of hash lookups. Due to space

constraints, we simply mention that specifying and varying the

runtime overhead constraints achieves similar results.

C. Microbenchmark

The previous experiments compared several end-to-end

strategies, however it can be difficult to distinguish the sources

of the benefits. This subsections summarizes the key differ-

ences between the prevailing strategies in terms of overhead

and query performance. The comparisons use an operator that

generates synthetic lineage data with tunable parameters. Due

to space constraints we show results from varying the fanin,

fanout and payload size (for payload lineage).

Each experiment processes and outputs a 1000x1000 array,

and generates lineage for 10% of the output cells. The re-

sults scaled close to linearly as the number of output cells

with lineage varies. A region pair is randomly generated by



selecting a cluster of output cells with a radius defined by

fanout, and selecting fanin cells in the same area from the

input array. We generate region pairs until the total number

of output cells is equal to 10% of the output array. The

payload strategy uses a payload size of fanin×4 bytes (the

payload is expected to be very small). We compare several

backward optimized strategies (← FullMany, ← FullOne,

← PayMany, ← PayOne), one forward lineage strategy

(→ FullOne), and black-box (BlackBox). We first discuss

the overhead to store and index the lineage, then comment on

the query costs.

Figure 8 compares the runtime and disk overhead of the

different strategies. For referenc, the size of the input array

is 3.8MB. The best full lineage strategy differs based on

the operator fanout. FullOne is superior when fanout ≤ 5
because it doesn’t need to create and store the spatial index.

The crossover point to FullMany occurs when the cost

of duplicating hash entries for each output cell in a region

pair exceeds that of the spatial index. The overhead of both

approaches increases with fanin. In contrast, payload lineage

has a much lower overhead than the full lineage approaches

and is independent of the fanin because the payload is typically

small and does not need to be encoded. When the fanout

increases to 50 or 100, PayMany and FullMany require less

than 3MB and 1 second of overhead. The forward optimized

FullOne is comparable to the other approaches when the

fanin is low. However, when the fanin increases it can require

up to fanin× more hash entries because it creates an entry

for every distinct input cell in the lineage. It converges to the

backward optimized FullOne when the fanout and fanin are

high. Finally, BlackBox has nearly no overhead.

Figure 9 shows that the query performance for queries

that access the backward/forward lineage of 1000 output/input

cells. The performance scales mostly linearly with the query

size. There is a clear difference between FullMany or

PayMany, and FullOne or PayOne, due to the additional

cost of accessing the spatial index (Figure 9). Payload lineage

performs similar to, but not significantly faster than full

provenance, although the query performance remains constant

as the fanin increases. In comparison (not shown), BlackBox
takes between 2 to 20 seconds to execute a query where

fanin=1 and around 0.7 seconds when fanin=100. Using a

mis-matched index (e.g, using forward-optimized lineage for

backward queries) takes up to two orders of magnitude longer

than BlackBox to execute the same queries. The forward

queries using → FullOne execute similarly to ← FullOne
in Figure 9 so we do not include the plots.

D. Discussion

The experiments show that the best strategy is tied to

the operator’s lineage properties, and that there are orders

of magnitude differences between different lineage strategies.

Science-oriented lineage systems should seek to identify and

exploit operator fanin, fanout, and redundancy properties.

Many scientific applications – particularly sensor-based or

image processing applications like environmental monitoring
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or astronomy – exhibit substantial locality (e.g., average tem-

perature readings within an area) that can be used to define

payload, mapping or composite operators. As the experiments

show, SubZero can record their lineage with less overhead than

from operators that only support full lineage. When locality

is not present, as in the genomics benchmark, the optimizer

may still be able to find opportunities to record lineage

if the constraints are relaxed. A very promising alternative

is to simplify the process of writing payload and mapping

functions by supporting variable granularities of lineage. This

lets developers define coarser relationships between input and

outputs (e.g., specify lineage as a bounding box that may

contain inputs that didn’t contribute to the output). This also

allows the lineage system perform lossy compression.

IX. RELATED WORK

There is a long history of provenance and lineage research

both in database systems and in more general workflow

systems. There are several excellent surveys that characterize

provenance in databases [8] and scientific workflows [9],

[10]. As noted in the introduction, the primary differences

from prior work are that SubZero uses a mix of black-box

and region provenance, exploits the semantics of scientific

operators (making using of mapping functions) and uses a

number of provenance encodings.

Most workflow systems support custom operators contain-

ing user-designed code that is opaque to the runtime. This

presents a difficulty when trying to manage cell-level (e.g.,

array cells or database tuples) provenance. Some systems [4],

[11] model operators as black-boxes where all outputs depend

on all inputs, and track the dependencies between input and

output datasets. Efficient methods to expose, store and query

cell-level provenance is an area of on-going research.

Several projects exploit workflow systems that use high

level programming constructs with well defined semantics.



RAMP [12] extends MapReduce to automatically generate

lineage capturing wrappers around Map and Reduce operators.

Similarly, Amsterdamer et al [13] instrument the PIG [14]

framework to track the lineage of PIG operators. However,

user defined operators are treated as black-boxes, which limits

their ability to track lineage.

Other workflow systems (e.g., Taverna [3] and Kepler [15]),

process nested collections of data, where data items may be

imagees or DNA sequences. Operators process data items in a

collection, and these systems automatically track which sub-

sets of the collections were modified, added, or removed [16],

[17]. Chapman et. al [18] attach to each data item a provenance

tree of the transformations resulting in the data item, and

propose efficient compression methods to reduce the tree size.

However, these systems model operators as black-boxes and

data items are typically files, not records.

Database systems execute queries that process structured

tuples using well defined relational operators, and are a natural

target for a lineage system. Cui et. al [19] identified efficient

tracing procedures for a number of operator properties. These

procedures are then used to execute backward lineage queries.

However, the model does not allow arbitrary operators to

generate lineage, and models them as black-boxes. Section V

describes several mechanisms (e.g., payload functions) that

can implement many of these procedures.

Trio [5] was the first database implementation of cell-level

lineage, and unified uncertainty and provenance under a single

data and query model. Trio explicitly stores relationships

between input and output tuples, and is analogous to the full

provenance approach described in Section V.

The SubZero runtime API is inspired by the PASS [20],

[21] provenance API. PASS is a file system that automat-

ically stores provenance information of files and processes.

Applications can use the libpass library to create abstract

provenance objects and relationships between them, analagous

to producing cell-level lineage. SubZero extends this API

to support the semantics of common scientific provenance

relationships.

X. CONCLUSION

This paper introduced SubZero, a scientific-oriented lineage

storage and query system that stores a mix of black-box and

fine-grained lineage. SubZero uses an optimization framework

that picks the lineage representation on a per-operator ba-

sis that maximizes lineage query performance while staying

within user constraints. In addition, we presented region lin-

eage, which explicitly represents lineage relationships between

sets of input and output data elements, along with a number

of efficient encoding schemes. SubZero is heavily optimized

for operators that can deterministically compute lineage from

array cell coordinates and small amounts of operator-generated

metadata. UDF developers expose lineage relationships and

semantics by calling the runtime API and/or implementing

mapping functions.

Our experiments show that many scientific operators can

use our techniques to dramatically reduce the amount of

redundant lineage that is generated and stored to improve

query performance by up to 10× while using up to 70× less

storage space as compared to existing cell-based strategies.

The optimizer successfully scales the amount of lineage stored

based on application constraints, and can improve the query

performance of the genomics benchmark, which is amenable

to black-box only strategies.. In conclusion, SubZero is an

important initial step to make interactively querying fine-

grained lineage a reality for scientific applications.
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