
Partitioning Techniques for Fine-grained Indexing
Eugene Wu, Samuel Madden

CSAIL, MIT
eugenewu@mit.edu

madden@csail.mit.edu

Abstract— Many data-intensive websites use databases that
grow much faster than the rate that users access the data. Such
growing datasets lead to ever-increasing space and performance
overheads for maintaining and accessing indexes. Furthermore,
there is often considerable skew with popular users and recent
data accessed much more frequently. These observations led us
to design Shinobi, a system which uses horizontal partitioning
as a mechanism for improving query performance to cluster
the physical data, and increasing insert performance by only
indexing data that is frequently accessed. We present database
design algorithms that optimally partition tables, drop indexes
from partitions that are infrequently queried, and maintain these
partitions as workloads change. We show a 60× performance
improvement over traditionally indexed tables using a real-world
query workload derived from a traffic monitoring application

I. INTRODUCTION

Indexes are the standard method for improving the per-
formance of selective queries and the past decade has seen
considerable research focused on selecting a near-optimal set
of indexes for a representative workload [1]. A careful balance
must be maintained between creating too many indexes, which
sacrifices disk space and insert performance, and creating
too few indexes, which results in poor query performance.
Furthermore, as the indexes grow alongside the datasets, the
performance and resource costs can be very high for a number
of reasons. First, updating the index for rapidly arriving data
can be very expensive; for example, we found that installing a
single varchar attribute index on a 3.4 GB table in Postgres or
MySQL can reduce insert performance by up to 40×. Second,
the total index size can easily rival that of the dataset – a
snapshot of Wikipedia’s revision table from 2008 uses indexes
that total 27 GB for 33 GB of raw data that does not include
article text. In order to constrain the amount of index space,
index selection tools require a maximum space bound [1].
Third, online reoptimization by creating and dropping indexes
on large, unpartitioned tables is prohibitively expensive.

Our key observation about many workloads is that despite
rapidly growing data sizes, the amount of accessed data
increases at a far slower pace. For example, Cartel [2] is a
sensor-based system we built for collecting data from cars as
they drive around Boston. The centroidlocations table stores
GPS information of participating cars every second and has
grown to over 18 GB in a few years. Yet the workload only
accesses 5% of the table on any given day, and more than
50% of the queries access data from just the last day. Similar
query skew exists for Wikipedia’s revision table, which stores
metadata information of every article’s revision history. 99.9%

of the requests access the 10% of records that represent the
most recent revision of an article.

If the queries always access a small subset of the table, then
a clear optimization is to split the table into the queried and
non-queried partitions, and selectively index the partitions that
are beneficial. Many applications already do this – warehouses
may partition the fact table into historical and recent transac-
tions and only index the latter. Unfortunately, the policies to
define the partitions and decide which partitions to index have
so far been adhoc, or have not taken the tradeoff of query
performance and index updates into account.

Additionally, data is not always clustered on the keys the
table is partitioned on. For example, a workload consisting of
spatial queries will benefit from partitioning centroidlocations
by the lat, lon attributes; however, the records are not likely to
be physically ordered by their lat, lon values, which leads to
excessive disk seeks when answering the queries [3]. Range
partitioning the data along the keys will group records with
similar values together and reduce the number of disk seeks.

In this paper, we describe Shinobi, a system that uses
partitioning to provide fine-grained indexing and improves the
performance of skewed query workloads, while optimizing
for index update costs. Shinobi uses three key ideas: first,
it partitions tables, such that regions of the table that are
frequently queried together are stored together, separate from
regions that are infrequently queried. Second, it selectively
indexes these regions, creating indexes on partitions that
are queried frequently, and omitting indexes for regions that
are updated but queried infrequently. Third, over time, it
dynamically adjusts the partitions and indexes to account for
changes in the workload. Shinobi takes as input a set of
indexes, a set of keys to partition on, a query workload, and
machine statistics such as RAM and the table size, and uses
a cost-based partitioner to find the optimal range partitioning
of the table and the best set of indexes for each partition.
As the workload evolves, Shinobi minimizes the amount of
repartitioning necessary to re-optimize the system for the new
workload characteristics. Shinobi is intended for workloads
with predicates on ordered attributes (e.g., salary or time). In
other workloads, it is sometimes possible induce an ordering
on the queried attributes to utilize Shinobi’s optimizations [4].

Our contributions toward partitioning in a single-machine
database are as follows:

1) Enabling selective indexing with partitioning. Shinobi
chooses the optimal partitions to index, which dramat-
ically reduces the amount of data that is indexed. In our



experiments using a workload from Cartel, Shinobi can
avoid indexing over 90% of the table and reduce index
update costs by 30× as compared to a fully indexed table
without sacrificing performance.

2) Partitioning based clustering. Shinobi optimally parti-
tions tables for a given workload, which increases query
performance by physically co-locating similarly queried
data. Using the same Cartel workload, we improve query
performance by more than 90× as compared to an
unpartitioned, fully indexed, table.

3) Reducing index creation costs. Shinobi only indexes
partitions that are frequently accessed. By splitting the
table into smaller partitions, the cost of creating an index
on a single partition becomes cheaper, which lets the
system make fine-grained optimizations.

4) Novel workload lifetime estimation. Shinobi uses a novel
online algorithm that uses past queries to estimate the
number of queries the workload will continuously access
in a given data region.

II. RELATED WORK

There is a large body of related work in the areas of
automated index selection and partitioning, index optimization,
adaptive databases and partial indexes.
Database Designers. Modern database design tools use query
optimizer extensions to perform what if analysis [5] – at a high
level, the optimizer accepts hypothetical table configurations
and queries as input and outputs the optimizer estimates.
The optimizer’s wealth of statistics and its highly tuned cost
model are powerful tools for estimating the cost of a potential
workload. Shinobi uses a cost model that does not attempt
to replicate decades of optimizer research [6], [7], but rather
identifies a small set of parameters for evaluating various table
configurations on a mixed query and insert workload.

Index selection tools explore the space of potential in-
dexes and materialized views. Both offline [1], [8], [9] and
online [10], [11], [12] tools find an optimal set of indexes
within user specified constraints (e.g., maximum index size).
Rather than replicate this work, Shinobi analyzes the output of
such tools (or hand-crafted physical designs), and runs index
selection and partitioning techniques to further optimize their
designs by identifying subsets of a table where installing an
index will be detrimental to performance.

Partitioning techniques such as [3], [13], [14], [15] partition
tables using workload statistics in order to improve query
performance. However, they do not explicitly consider index
update costs during cost estimation. In contrast, Shinobi ac-
counts for both query and insertion costs and uses partitioning
as a mechanism for dropping indexes on infrequently queried
portions of the data.
Optimized B-Trees. To optimize B-tree insert performance,
most work focuses on minimizing insert overheads by buffer-
ing and writing updates in large chunks. Such work include
insert optimized B-trees [16], [17], [18], and Partitioned B-
trees [19], [20], for traditional disk based systems, and flash
optimized B-trees such as [21]. Shinobi is agnostic to any

particular indexing technique as it focuses on dropping indexes
on partitions where indexes are not beneficial. Regardless
of the index that is being used, we can still realize insert
performance wins on insert intensive workloads.
Adaptive Storage. Database Cracking [22], [23] and other
adaptive indexing techniques incrementally sort and index the
underlying table based on the query workload. It creates a
copy of the keyed column and incrementally sorts the column
as a side effect of normal query execution. Partial-sideways
cracking is an extension that only replicates the queried data
ranges rather than the entire column. Database cracking is
intended for in-memory databases and has been shown to
perform comparably to a clustered index without the need to
provide a set of indexes up front. Adaptive Indexing [24] is
similar in spirit and leverages partitioned B-trees for block-
oriented (e.g., disk) storage. However, it fully indexes the table
and would still benefit from dropping indexes from unqueried
data ranges.
Partial Indexes. Finally, partial indexes [25] are a method for
building an unclustered index on a predicate-defined subset
of a table. Seshadri and Swami [26] propose a heuristic-based
method that uses statistical information to build partial indexes
given a constraint on the total index size. Unfortunately, there
are several practical limitations to partial indexes. First, in all
partial index implementations we know of, the query optimizer
only uses a partial index when it can determine that queries
access a strict subset of the index; by physically partitioning
a table and creating conventional indexes on a subset of
partitions, we avoid this subset limitation. Second, partial
indexes cannot be clustered because multiple partial indexes
can overlap; this limits the applicability of partial indexes to all
but the most selective queries. In contrast, Shinobi can cluster
indexes just like in a conventional system. When we used
Postgres’ partial indexes for the experiments in Section VI-A,
each query on average took 20 seconds to execute while index
creation took nearly 2000 seconds. On the other hand, Shinobi
can partition and index the same data in 500 seconds and
execute the same queries in 0.1-0.8 seconds on average. Thus,
one way to view our work is as an efficient implementation
of clustered, non-overlapping partial indexes.

III. ARCHITECTURE

Shinobi partitions and indexes tables to efficiently process
workloads with a high insert-to-query ratio. The input to
Shinobi is a list of attributes each table is to be partitioned
on, a set of indexes to install on the table, and a set of queries
and inserts that apply to the table. Indexes may be provided by
a database administrator or database tuner (e.g., [27]). Shinobi
finds an optimal set of non-overlapping range partitions and
chooses indexes for each partition (together denoted as the
table configuration) to maximize workload performance.

Shinobi supports arbitrary queries over SQL partitions. Most
DBMSs support the ability to store a table in partitions
and direct queries over a partitioned table to the appropriate
partitions (in our implementation we use the master/child



Fig. 1. The Shinobi architecture

partitioning feature of Postgres [28]; MySQL includes similar
features).

Shinobi acts as an intermediary between a database and
the workload. It consumes a workload and outputs rewritten
queries and inserts as well as SQL to repartition and re-index
the table. Shinobi can be used both to find an initial, optimal
table configuration for a static workload and to continuously
optimize the configuration under a dynamically changing
workload.

Figure 1 illustrates the system architecture. The solid and
dashed arrows indicate the query/data and call paths, re-
spectively. The workload follows two paths. Path 1 samples
incoming SQL statements and updates workload statistics
for the Cost Model. The Optimizer uses the cost model to
(re)optimize the table configuration. Path 2 parses queries
using the Query Rewriter, which routes queries with predicates
on the partitioning attribute to the relavent partitions. Queries
without such predicates are directed to all partitions.

The Workload Sampler reads recent SQL statements from
the query stream and computes workload characteristics such
as the insert to query ratio, and the query intensity of different
regions of the table. Similarly, the Machine Statistics compo-
nent estimates capabilities of the physical device as well as
database performance information. Physical statistics include
RAM size and disk performance while database statistics
include append costs, insert costs, and typical query costs (see
Table IV-B for a full parameter list.)

The Cost Model uses these statistics to calculate the ex-
pected statement cost for a workload. The key idea is that
the model takes into account not only query cost but also the
non-trivial cost of updating indexes on inserts and updates.
The Index Selector and Dynamic Repartitioner components
both use the Cost Model to optimize the table configuration.
The Index Selector calculates the best set of indexes to install
on each partition of a table and the Dynamic Repartitioner re-
optimizes the table configuration as the workload varies and
calls the Index Selector to decide which indexes to build.

IV. COST MODEL

In this section, we introduce models for predicting the
average cost per query in a workload, the cost to repartition
and reindex a table, and the overall benefit of switching to a
new table configuration. These models are used in Section V
to choose the optimal index configuration and partitioning.

Our cost model estimates the cost of range scans over single
tables (though the system itself can handle any query). We
preprocess the queries fed into our optimizers to extract a
set of ranges that they access from each table. Key-foreign
key joins between a table T1 with primary key k and a table
T2 with foreign key fk referencing k are treated as a range
scan on k in T1 and a range scan on fk in T2 with value
restrictions on k or fk propagated from the other table (if any
such restrictions exist.) Joins without such value restrictions
are treated as complete scans of all partitions of the underlying
table (as such joins are likely to be executed via hash or sort-
merge joins which scan tables in their entirety.) Our current
preprocessor is somewhat limited and will discard complex
queries which it cannot analyze; we are currently able to
handle all of the queries issued against the CarTel database
we use for evaluation, but implementing a more sophisticated
preprocessor is an area for future work.

The goal of the cost model is to accurately order the query
and update performance of different table configurations, and
not to exactly estimate the expected cost of all types of
queries. As our experiments validate, the simplified cost model
is enough to achieve this goal and allow us to see large
performance gains.

A. Variables

The values of the model constants were derived experimen-
tally and are shown in Table IV-B. Additionally, the following
is a list of common variables (and their values measured on
a 3.4 GB database running Postgres 8.1) used throughout the
rest of this paper. To improve readability, we assume that W
and I are globally defined and available to all cost functions
and algorithms.
W = Wq ∪Wi : The workload W consists of a set of select

queries Wq and insert statements Wi over a single table.
Π = {p1, .., pN} : The partitioning Π is composed of N range

partitions over the table. Each partition is defined by a
set of boundaries, one for each of D dimensions pi =
{(sd,pi , ed,pi ]|d ∈ {1, .., D}}.

I = {I1, .., Im} : The predetermined set of m indexes to
install on the table (from a database administrator, for
instance).

Ψ = {ψi ⊆ I|0 ≤ i ≤ N} : The set of indexes to install on
each partition. ψi defines the set of indexes to install
on partition pi. Ψ and its corresponding partitioning Π
always have the same number of elements.

B. Query Cost Model

The query cost model estimates the average expected cost
per statement in W given Π and Ψ. To a first approximation,
the average statement cost is proportional to a combination of
the average select and insert cost.

cost(Π,Ψ) ∼ a ∗ costselect + b ∗ costinsert

We use the probabilities of a select and insert statement for a
and b, respectively,

cost(Π,Ψ) =
|Wq|
|W | × costselect(Π,Ψ) +

|Wi|
|W | × costinsert(Ψ)



TABLE I
MODEL STATISTICS AND THE VALUES USED IN EXPERIMENTS

RAM 512MB Amount of memory
data size 3400MB size of the table
costseek 5ms disk seek cost
costread 18ms/MB disk read rate
costdbcopy 55ms/MB write rate within PostgreSQL
costcreateindex 52ms/MB bulk index creation rate
icostfixed 0.3ms record insert cost (no index updates)
icostoverhead .003ms/MB insert overhead per MB of indexes

(.019ms/MB) clustered (unclustered) data
lifetimeW variable Expected # queries in workload W

We now consider how to evaluate costselect and costinsert.

C. Select Costs

The main components that determine select cost are the
cost of index and sequential scans over each partition. We
make the simplifying assumption that a query q uses the index
in ψP that can serve its most selective predicates, and the
cost is proportional to the amount of data being accessed.
Additionally, we consider the cases where the heap file is
physically ordered on the partitioning key (clustered), and
when it is not (unclustered).

The model considers the select cost of each partition sep-
arately, and calculates the weighted sum as the select cost
across the entire table:

costselect(Π,Ψ) =
X

p,ψp∈Π,Ψ

|Wq ∩ p|
|Wq|

× costpselect(Wq ∩ p, p, ψp)

Where Wq ∩ p is the set of queries that access p, and
costpselect() is:

costpselect(Wqp, p, ψp) =
X

q∈Wqp

(
iscan( |q∩p||p| , p) q uses ψp
seqscan(p) otherwise

|Wqp|

costpselect is the average cost per query in Wqp. seqscan is
the cost of a sequential scan, and modeled as the sum of the
seek cost plus the cost of reading the partition:

seqscan(p) = costseek + size(p)× costread

where size(p) is the size in MB of p.
iscan is the cost of scanning an index and depends on

whether the data is clustered. If it is, then the cost is modeled
as a disk seek plus a sequential scan of the query result:

iscan(s, p) = costseek+s×size(p)×costread data is clustered

However if the data is not clustered, the cost is dependent
on the query selectivity, s, and the size of the partition, p, w.r.t.
the size of RAM. It is modeled using a sigmoid function that
converges to the cost of a sequential scan [29]. We assume
that the database system is using bitmap scans that sort the
page ids before accessing the heap file [30]. In this case, for
scans of just a few records, each record will be on a different
heap-file page; as more records are accessed, the probability
of several records being on one page increases. Eventually,
all pages are accessed and the cost is identical to a sequential
scan. The speed that the function converges to its maximum is
dependent on a parameter k which depends on the size of the

(a) size(table) < RAM (b) size(table) >= RAM

Fig. 2. Query cost w.r.t. query selectivity

(a) Real cost (b) Estimated cost

Fig. 3. Blanket query cost for varying table sizes (curves) and # partitions
(x-axis)

table and whether or not it fits into memory. We experimentally
measured k to be 150 when the partition fits into RAM, and
1950 when it does not:

iscan(s, p) = seqscan(p)× 1− e−k×s

1 + e−k×s
data not clustered

Figure 2 compares the actual and model estimated costs of
queries using an unclustered index on a machine with 512 MB
of memory for two different table sizes – one much smaller
than physical memory (155 MB) and one much larger (996
MB). The selectivities vary from 0.001% to 100% and each
query accesses a random range. In Figure 2(a), the model
under-estimates the cost for very small queries and over-
estimates the cost for queries larger than .1% in Figure 2(b),
however the overall shapes are similar. We found the curves
to be consistent for smaller and larger table sizes, although
the cost curves for when the tables are very close to the size
of memory lie somewhere in-between.

Queries that don’t contain a predicate on the partitioning key
(blanket queries) must execute the query on all of the partitions
and combine the results. A blanket query incurs costpselect

on every partition (Figure 3). We believe the slight “dip” in
query cost is because each partition becomes small enough to
fit into memory, thus switching the costpselect curve towards
the curve in Figure 2(a).

D. Insert Costs

The average cost of an insertion into a partitioned table is
dependent on the total size of all indexes, and the distribution
of inserts across the various partitions. For simplicity, we
assume that the distribution of inserts within a partition is uni-
form, whereas there may be skew across partitions. Although
this can overestimate the insert cost for large partitions, the
accuracy improves as partitions are split. We first describe how



(a) Actual costs (b) Model estimates

Fig. 4. Insert cost w.r.t. fraction of data in smaller table (curves) and insert
skew (x-axis)

to model the cost of inserting into a single partition, followed
by a model for multiple partitions.

1) Single Partition: The insert cost of a single partition,
πi, is modeled as the sum of a fixed cost to append the
record to the table, icostfixed, and the overhead of updating
the indexes (e.g., splitting/merging pages, etc) installed on
the partition. We experimentally observed that this cost is
linearly proportional to the size of the index. The overhead
is the product of the cost of updating each MB of index,
icostoverhead, and the total size of all indexes on the partition
in MB:

costinsert(ψi) = icostfixed + icostoverhead ×
X
u∈ψi

size(u)

where size(u) is the size in MB of index u. size(u) can be
easily calculated from the sizes of the partition keys and the
number of records in the partition.

It is widely known that B-tree insertions take time pro-
portional to logd(N), where d is the fan-out and N is the
number of records in the tree [31]. Our experiments showed
that PostgreSQL insertion costs increase linearly rather than
logarithmically as the total size of the indexes grows, which
is surprising. We believe the reason why update performance
deteriorates given larger total index sizes is that with larger
tables, each insert causes more dirty pages to enter the buffer
pool, leading to more evictions and subsequent page writes
to disk. [32] and experiments on Oracle observed similar
behavior.

2) Two Partitions: For simplicity, we first describe the
model for varying insert distributions between two partitions,
π0 and π1, and their respective sets of indexes ψ0 and ψ1. In-
tuitively, the insert cost will be maximized when the insertions
are distributed uniformly across the ranges of both partitions
(analogous to a single table of size=size({p0})+size({p1}));
conversely, the cost will be minimized when all of the inserts
are directed to p0 or p1. As described above, the cost of an
insertion is directly proportional to the sizes of the installed
indexes. The insert cost can be modeled with respect to an
effective total index size (sizeet(ψ0, ψ1)) that varies in size
based on the insert distribution:

costinsert(ψ0, ψ1) = icostfixed + icostoverhead × sizeet(ψ0, ψi)

sizeet is modeled using a modified triangle function where
its value at the peak is the total size of ψ0 and ψ1 whereas
the minimums are equal to the size of either ψ0 or ψ1:

totalsize = size(ψ0) + size(ψ1)

sizeet(ψ0, ψ1) = totalsize−X
j=0,1

max

„
0,

„
size(ψj)− totalsize ∗ |Wi ∩ ψj |

|Wi|

««

where |Wi∩πj |
|Wi| is the percentage of the insert workload that

inserts into partition πj .

Figure 4 compares the actual and model estimated costs of
inserts with varying data and insert skew on a machine with
512 MB of memory. We used a single 600 MB table that
is split into two partitions; the size of the smaller partition
varies between 0% to 50% of the original table (curves). The
distribution of inserts within each partition is uniform, however
the percentage of inserts into the small partition (x − axis)
varies from 0% to 100%. For each partition configuration
(curve), the insert cost is most expensive when the distribution
is uniform across the dataset – when the smaller partition
contains 25% of the data, the insert cost is maximized when
it serves 25% of the inserts. Although there is a nonlinear
component to the cost, our model captures the overall trend
very well.

3) N Partitions: The above model naturally extends to N
partitions, Π, and the respective indexes, Ψ. sizeet(Ψ) is
modeled by a multidimensional triangle function:

totalsize =
X
ψk∈Ψ

size(ψk)

sizeet(Ψ) = totalsize−X
ψj∈Ψ

max

„
0,

„
size(ψj)− totalsize ∗ |Wi ∩ ψj |

|Wi|

««

E. Repartitioning Cost Model

The repartitioning cost model estimates the cost to switch
from one table configuration to another. It takes as input the
existing configuration Πold, Ψold and the new configuration
Πnew, Ψnew, and calculates the cost of creating the new par-
titions and indexes. We measured the cost of dropping existing
partitions or indexes to be negligible. This repartitioning cost
is used in the partition optimizers to balance repartitioning
costs against improved workload performance. For clarity, we
use • to denote the arguments (Πold, Ψold, Πnew, Ψnew).

1) Partition Costs: The total partitioning cost, repartpart,
is the sum of the cost of creating the new partitions:
repartpart(•) =X
p∈Πnew

createp(p, {(pi, ψi) ∈ (Πold,Ψold)|pi ∩ p 6= ∅ ∧ pi 6= p})

createp(p,Λ∩) =X
p∩,ψ∩∈Λ∩

(costpselect(Wcreate,p∩, p∩, ψ∩) +
size(|p∩ ∩ p|)
costdbcopy

)

The second argument to createp is the set of existing partitions
and indexes that intersect the new partition p. If the new
partition already exists, there is no need to create it, and



the argument will be the empty set. createp is the cost of
creating p; it is the aggregate cost of querying each intersecting
partition, p∩, for the new partition’s data and writing the data
into p (at costdbcopy MB/sec). Wcreate,p∩ is the workload
consisting of queries that select data belonging in p.

2) Indexing Costs: The cost of installing indexes is directly
proportional to the size of the partition being indexed:

repartidx(•) =
X

(p,ψ)∈(Πnew,Ψnew)

createindex(p, ψ,Πold,Ψold)

createindex is the cost of creating the indexes ψ for p. It is
modeled as the product of p’s size, the cost to index one MB
of data and the number of indexes to create:

createindex(p, ψ,Πold,Ψold) = size(p)× costcreateidx×
|ψ \ {x ∈ ψj |pj = p ∧ (pj , ψj) ∈ (Πold,Ψold)}|

Note that if p already exists and has indexes installed, the
cost of recreating them is not included in the cost.

3) Total Cost: Given the previous partitioning and indexing
models, the total repartitioning cost is the sum of repartpart

and repartidx:
repart(•) = repartpart(•) + repartidx(•)

F. Workload Cost Model

The workload cost model calculates the expected benefit of
a new table configuration over an existing configuration across
the new workload’s lifetime.

benefitW (•) = (cost(Πold,Ψold)−cost(Πnew,Ψnew))∗lifetimeW

lifetimeW is the expected lifetime, in number of queries,
of the new workload before the workload shifts to access a
different set of data. This value is useful for the Dynamic
Repartitioner in order to estimate the total benefit of a new
table configuration and balance it against the cost of repar-
titioning the table. As the value increases, the partitioning
cost is amortized across the workload so that more expensive
repartitioning can be justified. This value can be calculated
as the sum of the lifetimes of the query only workload,
lifetimeWq , and the insert only workload, lifetimeWi .

lifetimeW = lifetimeWq + lifetimeWi

In Section V-C, we present an online algorithm that learns
the expected lifetime of a query-only or insert-only workload
and test its effectiveness in Section VI-A.3.

G. Total Workload Benefit

The total benefit of a new configuration, benefittotal,
including repartitioning costs, is defined as:

benefittotal(•) = benefitW (•)− repart(•)

V. OPTIMIZERS

This section describes Shinobi’s three primary optimizers
that use the cost model to partition the table, select indexes
for each partition, and repartition the table when the workload
changes, and a strategy for estimating the value of lifetimeW .
We begin with by describing the Index Selector as it is needed
by the repartitioner.

A. Index Selector

The goal of Index Selector is to find the Ψ that minimizes
the expected cost workload W on a database with partitions
Π. Formally, the optimization goal is:

Ψopt = argmin
Ψ

(cost(Π,Ψ))

Finding the naive solution to this optimization problem
requires an exhaustive search (O(2|Π|∗|I|)) because the indexes
do not independently affect the cost model Instead, we use a
greedy approach that adds k indexes at a time, stopping once
a local maximum is reached. The parameter k dictates how
thoroughly to explore the search space. When k = |Π||I|,
the algorithm is equivalent to an exhaustive search. In our
experiments k is set to 1 which reduces the runtime to
O((|Π||I|)2). This algorithm is very similar to Configuration
Enumeration in [9], which sets k = 2 in the first iteration,
then uses k = 1 in subsequent iterations.

B. Dynamic Repartitioner

The Dynamic Repartitioner merges, splits and reindexes the
partitions as the workload evolves and existing table config-
urations become suboptimal. For instance, if the workload
shifts to a large, unindexed partition, the cost of sequentially
scanning the partition will be very high, while creating an
index reduces insert performance; the Dynamic Repartitioner
will split the partition so that the queried ranges are isolated.
In order to avoid costly repartitions that marginally improve
workload performance, this component uses benefittotal (sec-
tion IV-F) to evaluate whether a new configuration is worth
the repartitioning cost.

We use an N-dimensional quad-tree (where N is the number
of partitioning attributes) that splits/merges partitions if the
query performance is expected to improve. Each leaf node
represents a single partition containing a sub-range of the
data. The tree implements the method getPartitions(), which
returns the partitioning represented by the leaf nodes.

Algorithm 1 takes as input the tree representation of the
current partitioning (root) and the current indexing (Ψ), and
outputs an optimized logical partitioning (no data is moved
while the algorithm runs) that the optimizer uses to physically
partition the data. Reoptimization begins with a merge phase
followed by a split phase; each phase takes root and Ψ as
input and returns the root of the modified tree. The order of
the phases is not important 1. The merge and split algorithms
are nearly identical, so we present them together and highlight
the differences in italics.

The goal of the merging [splitting] phase (Algorithm 1) is
to find the set of nodes to merge [split] that will maximize
the expected benefit (as defined in IV-F) over the existing
partitioning. Π is used to estimate the benefit of candidate
partitionings and benefitbest tracks the benefit of the best
partitioning so far (lines 1,2). In each iteration of the while
loop, nodes is initialized with the parents of the leaf nodes

1If the nodes can have a variable number of children (e.g., a node can have
2, 3, or 4 children), then it is necessary to merge prior to splitting so that the
tree can transform into any configuration.



[all of the leaf nodes] (line 4). The algorithm searches for
the node to merge [split] that will maximize the benefit over
benefitbest (lines 6-15). This is done by temporarily merging
[splitting] the node (line 7) in order to calculate the benefit
of the new partitioning (lines 8-10), and then reverting to the
previous tree (line 11). If a node that increases benefitbest

is not found, the algorithm returns the root of the tree (line
17). Otherwise the node is merged [split] and benefitbest is
updated to the benefit of the new partitioning (lines 19-20).

The runtime of the merge algorithm is limited by the number
of leaf nodes, and the fan-out. For L nodes and a fan-out
of F, the algorithm may run for L/F iterations in order to
merge L/F nodes, and call SelectIndex with lookahead=1
on L/F nodes in each iteration, for a total runtime of
O((L/F )2(L|I|)2). The split algorithm can theoretically run
until every partition contains a single record, but can be
bounded by setting a minimum allowable partition size.

In our experience, splitting occurs far more frequently than
merging. The only reason to merge is if the overhead of extra
seeks becomes significant relative to the cost of accessing
the data. For example, if the workload switches to an OLAP
workload consisting of large scans of the table, then the
optimizer will consider merging partitions.

1: Π← root.getPartitions()
2: benefitbest ← 0
3: while true do
4: nodes← {l.parent|l ∈ root.leaves()} [root.leaves()]
5: benefit, node ← 0, null
6: for n ∈ nodes do
7: n.merge() [n.split()]
8: Π′ ← root.getPartitions()
9: Ψ′ ← SelectIndex(Π′,1)

10: benefit′ = benefit(Π, Ψ, Π′, Ψ′)
11: n.split() [n.merge()]]
12: if benefit′ > benefit ∧ benefit′ > benefitbest then
13: benefit, node ← benefit′, n
14: end if
15: end for
16: if node = null then
17: return root
18: end if
19: node.merge() [node.split()]
20: benefitbest ← benefit
21: end while

Algorithm 1: MergePartitions/SplitPartitions(root, Ψ) [Differences
in italics]

C. Estimating Workload Lifetime

As we noted earlier, benefittotal is highly dependent on the
value of lifetimeW , defined as the number of SQL statements
for which the workload will continue to access (read or write)
approximately the same data range. This section describes
an algorithm that estimates the lifetime of a workload by
sampling the SQL statements.

The high level idea is to split the table into M equal sized
ranges and keep track of the lifetime of each individually.
For each range, we store a vector of lifetime values, where a
lifetime consists of a number of timesteps during which at least
one query accessed (read or write) the range. The most recent
lifetime increases until the range is not queried for several
timesteps, whereupon a fresh lifetime value is appended to
the vector. The lifetime of a given range is computed as a

weighted moving average of the individual lifetimes in the
vector. The lifetime of a partition is calculated as the average
lifetime of the intersecting ranges. We now describe the details
below.

For ease of explanation, we focus on a single range ri. We
describe how to 1) update its lifetime vector vi = [lt1, .., ltN ]
and 2) derive ri’s lifetime value. lt1 and ltN are the lifetimes
of the oldest and most recent lifetime in the vector, respec-
tively.

The naive approach for updating vi is as follows: during
each time interval, if range ri is queried at least once, then
ltN is incremented by one. Otherwise a new lifetime (ltN+1)
is added to vi by appending 0. To avoid over-penalizing if ri
is not queried for many timesteps, we only append to vi if
ltN is nonzero. The drawback of this approach is that it keeps
no history, so it is completely dependent on current workload
conditions. For example, if ri is consistently accessed every
other timestep, the lifetime will be reset every other timestep
and the range will never have a chance to be partitioned.

In light of this, we use an additional count variable ci,
which maintains an estimate of the number of queries that have
accessed ri in the past. In each timestep, ci is first multiplied
by a decay factor, α ∈ [0, 1], which controls the number of
future timesteps a query is counted, and then incremented
by the number of queries that access ri in the current time
interval. During a given timestep, ltN is incremented by 1 if
ci > τ ; otherwise a new lifetime is added to vi as in the naive
approach.

Finally, ri’s lifetime is calculated as the exponentially
weighted average of the values in vi, where β is the decay
factor. In our experiments, we derived α = 0.2, τ = 0.01,
and β = 0.2 by simulating a sample workload using the cost
model and running a greedy algorithm for each factor.

VI. EXPERIMENTS

In the following subsections, we describe experiments that
show the utility of Shinobi for partitioning and indexing tables
and the resulting space savings and performance gains.

Our current prototype is written in Python and issues SQL
commands to a backend database (this work used PostgreSQL
and MySQL). Each partition is implemented as a separate
table, and queries are rewritten to execute on the partitions.
A partition is created by executing a ‘‘create table as
select...’’ SQL query that reads the relevant data from
the existing partitions and adds the data to the new partition
table. The experiments use a dual 3.2 GHz Pentium IV with
512 MB of RAM and a 300GB 7200 RPM drive, running
Redhat Linux 2.6.16, PostgreSQL 8.1.10 and MySQL 5.0.27.
Shinobi uses SQL transactions to repartition tables, quiescing
the system until reorganization is complete.

Although Shinobi uses SQL transactions to repartition the
tables, we quiesce the system until repartitioning is complete
so that partitioning and workload costs can be clearly distin-
guished.



A. Multi-Dimensional Cartel Workload

In this section, we run Shinobi as an end-to-end system
on a two-dimensional dataset and several workloads. After
describing the experimental dataset and workload, we first
show that Shinobi can reduce the total cost of this workload
by over an order of magnitude. Then, we illustrate the utility
of the adaptive lifetime estimator, and finally explain how
partitioning can be used to avoid re-indexing costs on work-
loads that exhibit cyclic properties. Due to space limitations,
we do not include results for one-dimensional experiments,
however the results are very similar. Note that Shinobi works
well for, but is not limited to, spatial datasets – any workload
that queries tables via ordered attributes can benefit from our
techniques.

1) Dataset, Workload and Approaches: The dataset is the
centroidlocations table consisting of lat, lon, timestamp, and
several other identification attributes. The values of the lat and
lon fields are approximately uniformly distributed within the
ranges [35, 45] and [−80,−70] (the Boston area), respectively,
which we define as the dataset boundary. The table size is 3.4
GB, contains 30 million records, and is partitioned and indexed
(unclustered) on the lat, lon composite key.

In the following experiments, we use a realistic Cartel
workload, Wcartel, and two synthetic workloads, Wlifetime

and Wcyclic. All workloads contain multiple timesteps; each
timestep contains a number of spatial range queries followed
by a large number of insertions uniformly distributed across
the table. The queries access 0.1% of the table in a square
spatial bound.

The Cartel workload (Wcartel) contains 10 timesteps and
uses queries generated from the Cartel database’s daily trace
files between November 19, 2009 and December 5, 2009. To
generate the queries in a timestep, we pick a trace file, compute
the distribution of data that the file accesses, and sample 100
queries from the distribution. We then generate 360 inserts for
each query (36k/timestep), which is the ratio we found when
processing the trace files.

The first synthetic workload (Wlifetime) contains 10
timesteps and showcases how Shinobi responds to skewed
workloads that shift the “hot spot” at varying intervals. Each
timestep generates queries from a gaussian distribution (σ=5×
query size) centered around a random lat,lon coordinate. On
average, each workload uniquely accesses about 8% of the
table. Wlifetime has the same number of queries in each
timestep, however the number of queries vary between 1 and
1000, depending on the experiment – more queries in each
timestep means the workload accesses the same data for a
longer time and thus simulates a less dynamic workload than
one that accesses different data very often. The ratio of inserts
to queries is fixed at 100 inserts per query.

The second sythetic workload (Wcyclic) contains 8
timesteps, where each timestep is generated in the same way
as in Wlifetime. The center point of the gaussian repeats after
every 3 timesteps – the repetition helps illustrate the cumu-
lative cost of creating new indexes each time the workload
moves. Figure 8 visualizes two of the distributions.

We compare approaches that differ along two dimensions:
index selection technique and partitioning type. Full Indexing
(FI) indexes all of the data in the table, and Selective Indexing
(SI) uses the algorithm described in Section V-A to only
create beneficial indexes. Static Partitioning (SPN ) partitions
the table into N equally sized partitions, and Optimized
Partitioning (OP) finds the optimal partitioning as described
in Section V-B.

The approaches are a fully indexed table (FISI1); full
and selective indexing on a table statically partitioned into
N partitions (FISPN , SISPN ); and selective indexing on a
dynamically partitioned table (SIOP or Shinobi).

(a) Est. workload cost per timestep (b) Actual workload cost per
timestep

(c) Est. cumulative workload cost (d) Actual cumulative workload cost

Fig. 5. Shinobi performance on Cartel 2D workload

2) Cartel Results: In this experiment we run Shinobi on
a realistic workload (Wcartel) to validate the accuracy of the
cost model. We find that Shinobi performs as well as the best
statically partitioned configuration and avoids the high initial
cost of fully partitioning and indexing the table. The goal is
to maximize total system performance, so the optimizers also
take (re)partitioning costs into account.

Figure 5(b) shows the workload only performance over the
10 timesteps. Although not graphed, FISP1 took on average
1100 sec per timestep. The FISP9,49 curves illustrate the
effectiveness of statically partitioning the table into 9 and
49 partitions, respectively. Increasing the number of partitions
from 1 to 9 and 49 reduces the select query costs by over 3×
and 4×, respectively. Selective indexing only creates indexes
on heavily queried partitions, and reduces insert costs for
SISP9,49 by 7× and 21×, respectively. In fact, for timesteps
5-7, SISP49 didn’t create any indexes. Shinobi performs
as well as SISP49; the higher initial cost is because the
estimated lifetimeW is still small, so that Shinobi uses a
non-optimal but much cheaper partitioning. As lifetimeW

increases, Shinobi further partitions the table so that Shinobi
performs very close to SISP49 by timestep 2 and slightly



out-performs SISP49 by timestep 3. Overall, Shinobi out-
performs FISP1 by over 60×.

Figure 5(d) plots the cumulative cost of partitioning the
table and running the workloads. For reference, FISP1 took
11,000s to run the experiment. The values in timestep 1
are dominated by the initial partitioning and indexing costs.
Splitting the table into 9 and 49 partitions costs 660 and
2500s, respectively, while indexing all of the data costs 240s.
Although selective indexing (SISP9,49) can avoid indexing a
large fraction of the partitions and reduce indexing costs by
almost 200s, these initial partitioning costs are still substantial.
The reason for such high costs is because each partition is
created by a query that accesses the partition’s contents via
an index scan of the full table. In contrast, Shinobi chooses
a cheap partitioning because the estimated lifetimeW is still
low, and creates new partitions by accessing existing partitions.

The slopes of the curves represent the workload perfor-
mance and any repartitioning or indexing costs. FISP9 and
SISP9 have a low initial cost, but quickly outpace FISP49

and SISP49, respectively, due to higher query costs when ac-
cessing larger partitions. However, it is interesting to note that
SISP9 out-performs the more optimally partitioned FISP49

simply by reducing index update costs. Shinobi converges to
the same slope as SISP49 and initially partitions the table
in 2.5× less time. The slope between timesteps 1 and 5 are
slightly higher because of additional repartitioning costs that
are justified by an increasing lifetimeW value. Shinobi’s
total repartitioning costs are lower than that of FISP49 and
SISP49 because the cost of splitting a partition becomes
significantly cheaper as the partitions become smaller, and
because only the queried data regions, rather than the full table
is partitioned. Most importantly, Shinobi processes the entire
workload before FISP9,49 and SISP49 finish processing the
first timestep and out-performs FISP1 by 10×.

Figures 5(a) and 5(c) validate the accuracy of the cost
model. Although Shinobi scales the expected costs up, we
preserve the relative differences between the different strate-
gies. For example, we correctly predict the cross-over point
between Shinobi and SISP49 in Figure 5(a).

To verify that the performance trends observed are not
specific to PostgreSQL, we ran an identical experiment using
a MySQL-MyISAM backend and found similar trends, with
49 partitions performing better than 1 or 9 partitions, and with
selective indexing significantly reducing insertion costs.

Fig. 6. Shinobi’s 2D partitions and indexes after timestep 5. Dotted boxes are
partitions, solid edged boxes are indexed partitions, filled boxes are queries
(more queries results in darker fill).

Figure 6 shows the resulting table configuration after

timestep 5 on Wcartel; Shinobi focuses partition costs on
regions that are heavily queried. The filled boxes are queried
regions – more queries result in a darker fill; the dotted boxes
are partitions and the solid blue edged boxes (e.g., in the lower
right quadrant) are indexed partitions.

3) Lifetime Estimation: In this set of experiments, we
analyze Shinobi’s adaptivity to workloads (Wlifetime) that
access different regions with varying rates of dynamism and
show the importance of accurately predicting the value of
lifetimeW . We show that Shinobi running with the adaptive
lifetimeW estimator performs comparably to a “lookahead”
that knows the number of queries in a timestep prior to exe-
cuting it (Shinobi must adaptively estimate it). The lookahead
is configured with static lifetimeW values ranging from 100
to 100k queries.

In each timestep, the lookahead approaches load the new
workload, run the repartitioning algorithm using the given
lifetimeW value, and execute the workload to completion.
On the other hand, the adaptive approach estimates the new
lifetimeW in an online fashion.

Figure 7 shows the workload plus repartitioning costs at
each timestep when the workload lifetime is 100, 1k, 10k and
100k SQL statements. We find that for most cases, a naive
lookahead algorithm that sets lifetimeW to the actual length
of the workload results in the best performing curve. However,
this does not always occur, as in Figure 7(c), where the 100k
curve outperforms the 10k curve. The reason is that the naive
approach disregards the fact that two consecutive workloads
may overlap, and therefore underestimates lifetimeW for
shorter workloads. In general if the workload is long running,
it is better to over-estimate lifetimeW and over-partition the
table, rather than to run every query sub-optimally. Shinobi
always splits the table into 4 partitions in the first timestep
because it reduces the select costs from 60 to 20 seconds.

The adaptive lifetimeW estimator (Adaptive) performs
competitively in all of the experiments. In Figure 7(a), its
curve is nearly identical to the 10k curve and in the other
experiments, it converges to the optimal curve. The cost of
the adaptive algorithm is the start-up time; it needs to wait
for enough samples before the lifetimeW matches the actual
workload lifetime and the optimizer decides to re-optimize the
table layout. During this period, the query performance can be
suboptimal and Shinobi may repartition the same set of data
several times. This is clear in Figure 7(b), where Adaptive
closely resembles the 100 curve in the first 4 timesteps. In
timesteps 5 and 8, the lifetimeW value in the queried region
is large enough that Shinobi decides to repartition the table,
thus reducing the workload cost in subsequent timesteps.

4) Reindexing Costs: Although selective indexing alone
can improve insert performance and drastically reduce the
amount of data that must be indexed, it still incurs a high re-
indexing overhead for workloads that cycle between multiple
hot spots because it creates indexes for the current workload
only to drop the indexes soon after the workload moves.
For example, Figure 8 depicts the workload in two of the
timesteps. Timestep 1 (Figure 8(a)) indexes two of the nine



(a) Actual Lifetime = 100 (b) Actual Lifetime = 1k (c) Actual Lifetime = 10k (d) Actual Lifetime = 100k

Fig. 7. Shinobi performance with static and adaptive lifetimeW values (curves) for different actual lifetimes (plots)

(a) Timesteps 1, 4, and 7 (b) Timesteps 2, 5, and 8

Fig. 8. Visualization of Wcyclic.

(a) Index costs (b) Index and partitioning costs

Fig. 9. Repartitioning overheads of different partition schemes on Wcyclic

partitions. These indexes are dropped when the workload shifts
away in timestep 2 (Figure 8(b)), only to be recreated in
timestep 4.

Partitioning is an effective way of alleviating re-indexing
overheads. First, smaller partitions allow the dataset to be
indexed at a finer granularity, while also reducing the cost
of indexing a particular partition. Second, sequential scan
performance may be fast enough that indexes are not needed
for marginally accessed partitions. This trend is clear in Figure
9(a), which plots the cumulative indexing costs over the
8 timesteps in Wcyclic. Increasing the number of partitions
decreases the slope, because fewer indexes are created. Shinobi
does not incur any indexing overhead because it creates small
enough partitions that scanning the partitions is fast. As a
comparison, Figure 9(b) plots the sum of partitioning and
indexing costs. The SISP approaches must trade off between
indexing costs and partitioning the entire table before running
the workload. Shinobi partitions the table during the first
three timesteps, then incurs no overhead for the rest of the
experiment.

Finally, we note that even with the recurring indexing costs,
selective indexing still out-performs fully indexing or not

indexing the entire table.

B. Partitioning Experiments

This section compares different partitioning policies to
understand the query benefits of partitioning (without selective
indexing) on an unclustered dataset. We use the same dataset
as above but values of the timestamp column are uniformly
distributed throughout the table. The table is indexed and
partitioned on the timestamp attribute. This set of experiments
only considers a non-indexed or fully indexed table. The
workload contains 1000 select queries that each accesses
a random 0.1% range of the table via a predicate on the
timestamp colmun, and no insertions. Figure 10 shows the
results.

The first experiment partitions the table into an increasing
number of equal sized partitions and then executes the work-
load to completion. The cost per query decreases inversely
with the number of partitions (Figure 10(a)). Postgres executes
each index scan via a bitmap scan which sorts the ids of the
pages containing relevant records, and reads the pages in order.
Since the records are not clustered, the index must still read
a large number of pages to retrieve them (bounded by the
partition size). Beyond 5 partitions, the cost of scanning the
partition converges to the cost of accessing the data using an
index. Increasing the query selectivity shifts the convergence
point to the right.

As expected, the cost of partitioning increases linearly
with the number of partitions. Interestingly, the total indexing
cost slightly decreases (Figure 10(b)). This is because an
index grows as Nlog(N) where N is the size of the table.
Additionally, there is improved cache locality as more of the
partition and the index nodes can fit into memory.

Figure 10(c) plots the sum cost of partitioning, indexing,
and running the workload. As in Figure 10(a), indexing is most
beneficial when there are less than 5 partitions, above which
the cost of creating the indexes outweighs its query benefit.
The optimal number of partitions (25 for this workload) shifts
to the left (right) for shorter (longer) workloads. Section
VI-A.3 analyzes Shinobi’s online algorithm for estimating a
workload’s lifetime. The Static curve is the result of Shinobi
reading the entire workload a priori and finding the optimal
quad-tree based partitioning (32 partitions). For comparison,
the Dynamic curve is the total cost when optimizing the table
layout using Shinobi’s online algorithms.



(a) Query performance (b) Partitioning costs (c) Sum of all costs (d) Shinobi’s online optimizer

Fig. 10. Query impact and overhead costs as the number of partitions varies.

Figure 10(d) depicts the total costs of the dynamic repar-
titioner (Section V-B, uses a stacked graph to plot the query,
(query + partitioning) and (query + partitioning + indexing)
costs after processing the N th workload query. The optimizer
is run every 10 queries and Shinobi only repartitions the table
if the expected future query benefit outweighs the partitioning
cost. The Static curve is included as reference. At the be-
ginning of the workload, Shinobi is penalized with expensive
queries before aggressively partitioning the table in nearly
every round until the 200th query. At the end, the online
algorithm is within 1.5× of the static optimizer.

Finally, we describe how Shinobi responds to increasing
query sizes and blanket queries, however limit ourselves to
a high level description due to space constraints. In general,
Shinobi tends to favor splitting over merging – merging
partitions is an expensive operation and only reduces the seek
overhead of accessing multiple partitions. This overhead is
small compared to the size of large or blanket queries, thus
only very small partitions will be merged. Shinobi may even
split partitions if the queries partially overlap with them in
order to minimize the sizes of queried partitions. Blanket
queries are treated in a similar fashion, and the partitioning
is optimized for the non-blanket queries. In fact, Figure 3
illustrates that a small number of partitions can even improve
the performance of blanket queries.

C. Selective Indexing Experiments

In this section, we use a clustered version of the CarTel
dataset, and show how the workload performance and the size
of the indexes change as a function of varying workload char-
acteristics. Although a clustered dataset is highly optimized
for query performance (in fact, partitioning does not improve
query performance at all), we show that Shinobi’s selective
index can still significantly improve performance by reducing
insert overheads.

Because insert performance is directly related to the size
of the indexes, we report the percentage of the table that
is indexed (%indexed) and the expected cost per SELECT
statement (Select). The workload consists of 100 queries
generated from an exponentially decaying distribution over
the timestamp values and a varying number of inserts uni-
formly distributed throughout the table. By generating syn-
thetic queries, we are able to control a range of system
parameters, including a) Query Size, the percentage of the
table each query accesses (Default: 1%), b) Insert to Query

Ratio (IQR), the number of insert statements for every select
statement (Default: 100), c) # Partitions, the number of equally
sized partitions the table is split into (Default: 20), and d)
Partitions Accessed (PA), the number of partitions that the
workload accesses (Default: 9). Figure 11 shows how the
Select and %indexed curves vary with respect to the above
characteristics. The left Y-axis displays the percentage of the
table indexed, from 0% to 100%. The right Y-axis shows the
values of the Select curve, in seconds.

Figure 11(a) varies the query size from 0.01% to 100% of
the table, plotted on a logarithmic scale. Shinobi indexes all
of the queried partitions when the queries are smaller than
5% (the size of a partition). When the query size exceeds 5%,
Shinobi chooses not to index fully read partitions. Above 75%,
the cost of maintaining indexes exceeds their query benefit
and all indexes are dropped. The “cliff” in the curve shifts
to the left as inserts become more expensive (e.g., data is
unclustered). As expected, Select cost increases as more data
is accessed.

Figure 11(b) varies the IQR from 1 to 100k, also plotted on
a log scale. The %indexed curve starts at 45%, where all of
the queried partitions are indexed, and starts decreasing past
IQR=2000 because the indexes on sparsely queried partitions
are dropped. Shinobi continues to drop indexes until IQR
= 100K, at which point none of the partitions are indexed.
Naturally, the Select curve increases as more queries are
executed with sequential scans of the partitions. However this
is justified when insert costs become the dominant factor.

Figure 11(c) show that partitioning is a good mechanism for
fine grained indexing without impacting query performance.
We show two pairs of curves for IQR=100 (no markers) and
IQR=1k (with markers). When the IQR is low, Shinobi indexes
all accessed partitions so that the Select curve stays flat (the
curve is near the x-axis), however this limits the number of
partitions that do not need indexing. For a larger IQR, when
the workload is insert-dominated, the Select curve increases
as Shinobi aggressively drops indexes on sparsely queried
partitions, then gradually decreases as partition sizes decrease.

Figure 11(d) varies the number of partitions accessed by
spreading out the queries. As expected, the amount of indexed
data grows with the number of accessed partitions while the
Select cost stays constant. This shows that Shinobi is most
effective when the workload accesses a small subset of the
data.

Reducing the size of the index also reduces insert overhead.



(a) Vary query size (b) Vary insert-query ratio (c) Vary number of partitions (d) Vary number of accessed partitions

Fig. 11. Percentage of table that is indexed and avg. statement cost as various workload characteristics change

Eliminating a full index can reduce insert costs by 3-40×,
depending on whether or not the data is clustered. By dropping
indexes on large subsets of the table, Shinobi can drastically
reduce insert costs, even for clustered datasets.

D. Optimization Runtime Overhead

We also ran a number of experiments to measure the
runtime of the optimization algorithms themselves. We omit
the details due to space constraints, but we found that for all
of the experiments above, calling the repartitioner cost less
than 1 second (far less than the actual repartitioning time.)
The dominant cost is choosing the partitions, which grows
quadratically with the number of partitions and amount of table
accessed, and in pathological cases can grow to take several
seconds when there are hundreds of partitions. These costs are
still likely much less than the actual repartitioning times.

VII. CONCLUSIONS

This paper presented Shinobi, a system that horizontally
partitions and indexes databases for skewed query workloads
containing queries that access specific regions of the data
(which may vary over time) and possibly many inserts spread
across large portions of the table. Our key idea is to partition
the database into non-overlapping regions, and then selectively
index just the partitions that are accessed by queries. We
presented an index-aware cost model that is able to predict
the total cost of a mix of insert and range queries, as well
as algorithms to select and dynamically adjust partitions and
indexes over time and reorder records so that popular records
are close together on disk.

Our experiments show partitioning significantly reduces
query costs when the dataset is not clustered on the partition
keys, whereas selective indexing can dramatically reduce the
index size, and correspondingly the index costs, even for clus-
tered datasets. We show dramatic performance improvements
on a real-world two-dimensional query workload from a traffic
analysis website, with average performance that is 60× better
than an unpartitioned, fully indexed database.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and V. Narasayya, “Automated selection of
materialized views and indexes for sql databases,” in VLDB, 2000.

[2] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden, “CarTel: A Distributed Mobile
Sensor Computing System,” in SenSys, 2006.

[3] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An adaptive
storage system for very large trajectory data sets,” in ICDE, 2010.

[4] E. Wu, “Shinobi: Insert-aware partitioning and indexing techniques for
skewed database workloads,” Master’s thesis, MIT, 2010.

[5] S. Chaudhuri and V. Narasayya, “Autoadmin “what-if” index analysis
utility,” in SIGMOD, 1998.

[6] M. Jarke and J. Koch, “Query optimization in database systems,” in
ACM Computing Surveys, 1984.

[7] S. Chaudhuri, “An overview of query optimization in relational systems,”
in PODS, 1998.

[8] G. Valentin, M. Zuliani, and D. C. Zilio, “Db2 advisor: An optimizer
smart enough to recommend its own indexes,” in ICDE, 2000.

[9] S. Chaudhuri and V. Narasayya, “An efficient, cost-driven index selection
tool for microsoft sql server,” in VLDB, 1997.

[10] N. Bruno and S. Chaudhuri, “An online approach to physical design
tuning,” in ICDE, 2007.

[11] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis, “On-line index
selection for shifting workloads,” in SMDB, 2007.

[12] K.-U. Sattler, M. Luhring, I. Geist, and E. Schallehn, “Autonomous
management of soft indexes,” in SMDB, 2007.

[13] S. Ceri, M. Negri, and G. Pelagatti, “Horizontal data partitioning in
database design,” in SIGMOD, 1982.

[14] S. Papadomanolakis and A. Ailamaki, “Autopart: Automating schema
design for large scientific databases using data partitioning,” in SSDBM,
2004.

[15] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and
horizontal partitioning into automated physical database design,” in
SIGMOD, 2004.

[16] G. Graefe, “Write-optimized b-trees,” in VLDB, 2004.
[17] C. Jermaine, “A novel index supporting high volume data warehouse

insertions,” in VLDB, 1999.
[18] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured

merge-tree (lsm-tree),” Acta Inf., vol. 33, no. 4, pp. 351–385, 1996.
[19] G. Graefe, “Partitioned b-trees - a user’s guide,” in BTW, 2003.
[20] ——, “Sorting and indexing with partitioned b-trees,” in CIDR, 2003.
[21] D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao, and S. Singh, “Lazy-

adaptive tree: An optimized index structure for flash devices,” PVLDB,
2009.

[22] M. L. Kersten and S. Manegold, “Cracking the database store,” in CIDR,
2005.

[23] S. Idreos, M. L. Kersten, and S. Manegold, “Self-organizing tuple
reconstruction in column-stores,” in SIGMOD, 2009.

[24] G. Graefe and K. Harumi, “Adaptive indexing for relational keys,” in
SMDB, 2010.

[25] M. Stonebraker, “The case for partial indexes,” in VLDB, 1987.
[26] P. Seshadri and A. Swami, “Generalized partial indexes,” in ICDE, 1995.
[27] S. Agrawal, S. Chaudhuri, L. Kollar, and V. Narasayya, “Index tun-

ing wizard for microsoft sql server 2000,” http://msdn2.microsoft.com/
en-us/library/Aa902645(SQL.80).aspx.

[28] “http://www.postgresql.org/docs/current/static/ddl-partitioning.html,”
http://www.postgresql.org/docs/current/static/ddl-partitioning.html.

[29] H. Kimura, S. Madden, and S. B. Zdonik, “UPI: A Primary Index for
Uncertain Databases,” in VLDB, 2010.

[30] “Postgresql 8.1.20 documentation,” http://www.postgresql.org/docs/8.1/
static/release-8-1.html.

[31] D. Comer, “Ubiquitous B-Tree,” in ACM Computing Surveys, vol. 11,
no. 2, 1979.

[32] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. Zdonik, “CORADD:
Correlation aware database designer for materialized views and indexes,”
in PVLDB, 2010.


