
A Demonstration of DBWipes: Clean as You Query

Eugene Wu
MIT CSAIL

eugenewu@mit.edu

Samuel Madden
MIT CSAIL

madden@csail.mit.edu

Michael Stonebraker
MIT CSAIL

stonebraker@csail.mit.edu

ABSTRACT
As data analytics becomes mainstream, and the complexity of the
underlying data and computation grows, it will be increasingly im-
portant to provide tools that help analysts understand the underly-
ing reasons when they encounter errors in the result. While data
provenance has been a large step in providing tools to help debug
complex workflows, its current form has limited utility when de-
bugging aggregation operators that compute a single output from
a large collection of inputs. Traditional provenance will return the
entire input collection, which has very low precision. In contrast,
users are seeking precise descriptions of the inputs that caused the
errors. We propose a Ranked Provenance System, which identi-
fies subsets of inputs that influenced the output error, describes
each subset with human readable predicates and orders them by
contribution to the error. In this demonstration, we will present
DBWipes, a novel data cleaning system that allows users to ex-
ecute aggregate queries, and interactively detect, understand, and
clean errors in the query results. Conference attendees will explore
anomalies in campaign donations from the current US presidential
election and in readings from a 54-node sensor deployment.

1. INTRODUCTION
As data analytics becomes mainstream, and the complexity of

the underlying data and computation grows, it will be increasingly
important to provide tools that help analysts understand the un-
derlying reasons when they encounter strange query results. Data
provenance [9, 7, 6] has been a large step in providing tools to help
debug complex workflows. There are currently two broad classes of
provenance: coarse-grained and fine-grained provenance. Coarse-
grained provenance enables users to specify an output result and
retrieve the graph of operators that were executed to generate the
result; fine-grained provenance returns the inputs that were used to
compute the output result.

Unfortunately, neither class of provenance is useful when debug-
ging aggregate operators that ingest a large collection of inputs and
produce a single output – a common operation performed during
data analysis. Consider a sensor deployment that takes tempera-
ture, humidity and light readings. A user executes an aggregate
query that computes the average temperature in 30 minute win-
dows. When the user sees that the average temperature was 120

degrees, she will ask why the temperature was so high. If the user
retrieves coarse-grained provenance, she will be presented with the
query execution plan, which is uninformative because every input
went through the same sequence of operators. On the other hand,
if she retrieves fine-grained provenance, she will be presented with
all of the sensor readings (easily several thousand) and be forced to
manually inspect them. Neither approach helps the user precisely
identify and understand the inputs that most likely caused the error.

Existing provenance systems exhibit two key limitations:
1) They do not provide a mechanism to rank inputs based on how
much each input influences the output – all inputs are assigned
equal importance. While it is possible to construct pre-defined
ranking criteria for certain aggregate operators (e.g., for an aver-
age that is higher than expected, the inputs that bring the average
down the most are the largest inputs), the user’s notion of error is
often different than the pre-defined criteria (e.g., the user may ac-
tually be concerned with a set of moderately high values that are
clustered together). A provenance system needs a mechanism for
users to easily specify their additional criteria.
2) Provenance systems return a set of tuples. While a collection of
tuples can be used to train “blackbox” classifiers to identify similar
tuples in the future, the user will ultimately want to understand the
properties that describe the set of tuples, to understand where or
why error arises. This necessitates a system that returns an “expla-
nation” of the individual tuples.

With this in mind, we are developing a Ranked Provenance Sys-
tem that orders query inputs by how much each input influenced a
set of output results based on a user-defined error metric. Our key
insight is that users are often able and willing to provide additional
information such as how the results are wrong and/or providing ex-
amples of suspicious inputs. Since our approach relies on user input
to specify erroneus or outlier results, the system is tightly coupled
with a visual interface that is designed to help users efficiently iden-
tify and specify these additional inputs.

In this demonstration, we will show how ranked provenance can
be coupled with a visual querying interface to help users quickly go
from noticing a suspicious query result to understanding the rea-
sons for the result. We have created an end-to-end querying and
data cleaning system called DBWipes that enables users to detect
and remove data-related errors. Conference attendees will query
two datasets – the 2012 Federal Election Commission (FEC) pres-
idential contributions dataset1, and the Intel sensor dataset2. The
DBWipes dashboard can be used to visualize the query results,
and includes interactive controls that allow attendees to identify
and describe suspicious results. The dashboard presents a ranked

1ftp://ftp.fec.gov/FEC/Presidential_Map/2012/
P00000001/P00000001-ALL.zip

2http://db.csail.mit.edu/labdata/labdata.html

list of predicates that compactly describe the set of suspicious in-
put tuples. The system employs novel uses of subgroup discov-
ery [4], and decision tree learning. Finally, the audience can clean
the database by clicking on predicates to remove them from future
queries. This interaction will highlight the value of tightly coupling
a visual interface with a ranked provenance system.

2. SYSTEM OVERVIEW
In this section we provide an overview of the ranked provenance

problem formulation and then report our current system architec-
ture and implementation.

2.1 Problem Overview
For simplicity, consider a dataset D, and a query Q that con-

tains a single aggregate operator, O, a group by operator, G, that
generates g partitions, G(D) = {Di ⊆ D|i ∈ [1, g]}. That is,
Di are the tuples in the i’th group. For example, in the tempera-
ture sensor query from the previous section, O() is the avg() op-
erator; D is the table, sensors, that contains all sensor readings;
G partitions D into sensor readings of 30 minute windows; and
Di is the set of tuples in the i’th window. Furthermore, let ri be
the result of O(Di) (e.g., average temperature for i’th sensor), and
R = Q(D) = {ri|i ∈ [1, g]} be the set of all aggregate results.

When the user views the results, she will specify a subset, S ⊆
R, that are wrong (e.g., windows where the temperature was 120
degrees), and an error metric, ε(S), that is 0 when S is error-free
and otherwise >0. For example, the following εdiff (S) is defined
as the maximum amount an element s ∈ S exceeds a constant c.
In the Intel sensor example, it computes the maximum difference
between each user-specified outlier average temperature value in S
and an expected indoor temperature, tempexpected. The user only
needs to pick εdiff from a collection a pre-defined error functions
and specify tempexpected:

εdiff (S) = max(0,max
si∈S

(si − c))

Let us first consider an idealistic optimization goal of a ranked
provenance system before describing our current formulation.

Given D, O, S, and ε, we would like the ranked provenance
system to produce a predicate, P , that is applied toD to produce the
input tuples, D∗, causing ε to be non-zero. That is, D∗ = P (D)
is the result of applying P to the dataset, such that ε(O(D −D∗))
is minimized. For example, P may be “(sensorid = 15 and time
between 11am to 1pm)”.

Unfortunately, the formulation above has several problems. First,
it is not clear how to efficiently construct D∗ given an arbitrary ε
function. In the worst case, the system must evaluate ε on a num-
ber of datasets exponential in |D|. Second, ranking solely using ε
does not address limitation 1 from the introduction – namely that
the user has additional ranking criteria not captured by ε.

We address the above limitations by asking the user to provide
an example set of inputs D′ ⊆ D that approximates D∗. As an
approximation,D′ does not need to be complete nor fully accurate,
it simply needs to highlight the type of inputs the user is interested
in. D′ will be used to bootstrap the process of finding D∗ and
evaluating candidate predicates P .

We now break the problem into three sub-problems:
1) Candidate D∗ Enumeration: D′ must first be cleaned and

extended into a set of candidate D∗ datasets. We first remove erro-
neous tuples by identifying a consistent subset of D′, then extend
it to enumerate a set of candidate datasets Dc

1, . . . , D
c
n that are self

consistent and closer approximations of D∗. ε is used to control
the extension process.

2) Predicate Enumeration: DBWipes then generates a set of
compact predicates, P i

1 , . . . , P
i
m, that describe each candidate

dataset, Dc
i .

3) Predicate Ranking: The third problem is to rank the predi-
cates based on the size of the predicate., how well it describes the
dataset D′, and how much it minimizes ε.

2.2 System Architecture
DBWipes combines a visualization frontend and a provenance

backend. The frontend provides a query and visualization interface
to gather provenance query information and maximize the accuracy
of the user selected D′. The backend then computes ranked prove-
nance results and sends a ranked list of predicates for the frontend
to display. Figure1 displays the tight interactive loop that ties the
frontend (top) together with the backend (bottom) – the frontend
diagram shows a flow chart of user actions, while the backend di-
agram depicts major system components and control flow between
them.

Dataset&
Enumerator&

Predicate&
Generator&

Predicate&
Ranker&

Query,&S,&D’,&ε&

Predicates&

Preprocessor&

Execute&
Query&

Visualize&
Results&

Select&Suspicious&
Results&(S)&

Select&Suspicious&
Inputs&(D’)&

Frontend&&(leC&to&right)&

Backend&(right&to&leC)&

Figure 1: DBWipes Architecture Diagram. The top section
shows the sequence of user actions to describe a provenance
query, the bottom section describes the major system compo-
nents and control flow.

2.2.1 Frontend Design
Figure 2 highlights the four main frontend components. The

frontend interface is designed to simplify the process of specify-
ing S, ε, and D′. The major components are:

1"

2"

3"

4"

Figure 2: DBWipes Interface

1) Query Input Form: Users submit aggregate SQL queries us-
ing the web form (Figure 3). As users clean the database and select
predicates to (see Ranked Predicates), the query is automatically
updated.

2) Visualization and S,D Selection: Query results are automat-
ically rendered as a scatterplot. When the query contains a single

Figure 3: Query Input Form

group-by attribute, the group keys are plotted an the x-axis and
the aggregate values on the y-axis. If the query contains a multi-
attribute group-by, the user can pick two group-by attributes to plot
against each other. We are currently investigating additional meth-
ods to visualize multi-attribute group-by results, such as plotting
the two largest principal components against each other.

Figure 4 shows how users view and highlight suspicious query
resultsand then zoom in to view the individual tuple values. The left
graph plots the average and standard deviation of temperature (y-
axis) in 30 minute windows (x-axis) from the Intel sensor dataset.
The user specifies S by highlighting suspiciously high standard de-
viation values and then clicks “zoom in”. She is then presented with
the right half, which plots the temperature value of all the tuples in
the highlighted groups. She finally specifies D′ by highlighting
outlier points with temperature values above 100 degrees.

3) Error Metric Form: The frontend dynamically offers the
user a choice of predefined metric functions depending on the query
results that are highlighted by the user. For example, if the user
highlighted results generated by the avg function, DBWipes would
generate such as “value is too high”, and “should be equal to ”
(Figure 5).

Figure 5: Error Forms

4) Ranked Predicates: After selecting tuples in D′, and select-
ing an error metric, the system computes a ranked set of predicates
(Figure 6) that compactly describe the properties of the selected
points (we describe how this selection is done in the next section).
These predicates a shown in on the right side of the dashboard.
The user can click on a hypotheses to see the result of the origi-
nal query on a version of the database that does not contain tuples
satisfying the hypothesis. The visualization and query (Figure 3)
automatically update so that the user can immediately explore new
suspicious points after clicking the appropriate predicate.

2.2.2 Backend Components
The backend takes Q, ε, S and D′ as input, and outputs a ranked

list of predicates. First, the Preprocessor computes F , the set of
input tuples that generated S; F − D′ is an approximate set of
error-free input tuples. It then uses leave-one-out analysis to rank
each tuple in F by how much it influences ε. The rest of the com-
ponents correspond to the sub-problems described in Section2.1.
The Dataset Enumerator cleans and extendsD′ to generate a set of
candidate D∗s – {Dc

1, . . . , D
c
n}. The Predicate Enumerator con-

structs multiple decision trees for each candidateDc
i . The decisions

Figure 6: A ranked list of predicates that can be added to the
Intel sensor query

trees are ranked by the Predicate Ranker, and finally converted into
predicates to return to the frontend.

The Dataset Enumerator cleans D′ by identifying a self consis-
tent subset. We are currently experimenting with clustering (e.g.,
K-means) and classification based techniques that train classifiers
on D′ and remove elements that are not consistent with the clas-
sifier. We then extend the cleaned D′ using subgroup discovery
algorithms to find groups of inputs that highly influence ε. Sub-
group discovery [4] is a variant of decision tree classifiers that find
descriptions of large subgroups that have the same class value in
a dataset. Consider a database of patient health information (e.g.,
weight, age, and smoking attributes) and whether or not they are at
high-risk for cancer (the class variable). Subgroup discovery will
find that smokers over the age of 65, and heavy weight people are
two significant subgroups of the high-risk patients. In our case, we
want to find subgroups that contain both the cleanedD′ and subsets
of F that most strongly influence ε. The output of the component
is a set of n candidate datasets Dc

1, . . . , D
c
n

The Predicate Enumerator then builds a decision tree on each
candidate dataset Dc

i by labeling Dc
i as the positive class and

F − Dc
i as negative. We currently use m standard splitting and

pruning strategies (e.g., gini, gain ratio) to construct several trees,
T i

1 , . . . , T
i
m from each dataset, Dc

i .
Finally, the Predicate Ranker computes a score for each tree, T i

j ,
that increases with improvement in the error metric, and the accu-
racy of the tree at differentiating Dc

i from F −Dc
i , and decreases

by the complexity (number of terms in) the predicate.
DBWipes currently supports the common PostgreSQL aggre-

gates (e.g., avg, sum, min, max, and stddev) and several error func-
tions (e.g., “higher/lower/not equal to expected value”).

3. DEMONSTRATION DESCRIPTION
As described above, DBWipes combines a a web interface with

a ranked provenance engine that lets the audience analyze imported
data by running SQL aggregation queries.

3.1 Datasets
In the demonstration, users explore the underlying reasons for

anomalies in two datasets: the 2012 FEC presidential campaign do-
nations dataset and the Intel sensor dataset. We have found several
interesting anomalies, and will provide a inital queries that users
can use. We additionally encourage attendees to write their own
ad-hoc queries and explore the datasets.

The FEC dataset contains several tables that contain donation
and expenditure data in the 2012 presidential election. Each ta-
ble contains information such as the presidential candidate (e.g.,
Obama, McCain), the donor’s city, state, and occupation informa-

Figure 4: The user highlights several suspicious results in the left visualization and zooms in to view the raw tuple values.

tion, the donation amount and date, and a memo field that describes
the type of contribution in more detail.

The Intel sensor dataset contains 2.3 million sensor readings col-
lected from 54 sensors across one month. The sensors gather tem-
perature, light, humidity, and voltage data about twice per minute.

3.2 Demo Walkthrough

Figure 7: McCain’s total recieved donations per day since
11/14/2006

We now describe a walkthrough of how a data journalist uses
DBWipes – this is similar to how conference attendees will interact
with the demo. Imagine a data journalist that is analyzing the 2008
presidential election, looking for the next big story. She downloads
and imports a campaign contributions dataset from the FEC. After
executing a few exploratory queries, she generates Figure 7, which
plots the total amount of donations John McCain recieved per day.
While each contribution spike correlates with a major campaign
event, she finds a strange negative spike in McCain’s contributions
around day 500 into the campaign. At this point, instead of writing
additional queries to manually view each donation around that day
and attempt to construct an explanation, she highlights the suspi-
cious data point and clicks “zoom”. The plot is updated to show
all of the individual donations on the days around day 500, and she
sees several negative donations. She highlights them, picks the er-
ror metric “values are too low” and clicks “debug!”. The system
then returns several predicates, one of which includes several ref-
erences to the memo attribute containing the string “REATTRIBU-
TION TO SPOUSE”. When she clicks the predicate, a significant
fraction of the negative value disappears. She later researches the
term and finds that it is a technique to hide donations from high pro-

file individuals (e.g., CEOs) to controversial/unpopular candidates
by attributing the donation to the individual’s spouse.

We will provide several queries that conference attendees can
run to bootstrap their investigations on the FEC and Intel datasets.

4. RELATED WORK
The goals in DBWipes are most similar to that of Causal Rela-

tionships and View Conditioned Causality [5]. Meliou et al define
a notion of provenance causality that enables them to rank inputs
based on a relevance metric. An input X is VC Causal if there ex-
ist any additional inputs, Γ, such that altering {X} ∪ Γ will fix the
outputs (in our case, minimize ε). X’s relevance is then defined as

1
1+minΓΓ

– this metric is an elegant way to rank individual inputs.
Using this framework, they efficiently answer causality questions
of boolean expressions using a SAT solver. In contrast, DBWipes
answers ranked provenance queries over complex aggregate opera-
tors (instead of boolean expressions) and supports additional rank-
ing metrics. Kanagal et al. [2] have very similar work that uses
sensitivity analysis to rank probabilistic provenance.

DBWipes is also similar to interactive data cleaning systems [3,
8, 1], which support interactive data cleaning and transformations
for unstructured data during data import, and provenance systems
such as Trio [9], which compute the full set of inputs that generated
an output result.

5. REFERENCES
[1] D. Huynh and S. Mazzocchi. Google refine.

http://code.google.com/p/google-refine/.
[2] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and explanations for

robust query evaluation in probabilistic databases. In SIGMOD, pages 841–852,
2011.

[3] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: interactive visual
specification of data transformation scripts. In CHI, pages 3363–3372, 2011.

[4] N. Lavra, B. Kavek, P. Flach, and L. Todorovski. Subgroup discovery with
cn2-sd. In JMLR, volume 5, pages 153–188, Feb. 2004.

[5] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore, and D. Suciu.
Causality in databases. In IEEE Data Eng. Bull., volume 33, pages 59–67, 2010.

[6] K.-K. Muniswamy-Reddy, J. Barillariy, U. Braun, D. A. Holland, D. Maclean,
M. Seltzer, and S. D. Holland. Layering in provenance-aware storage systems.
Technical Report 04-08, 2008.

[7] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger,
R. Stevens, A. Wipat, and C. Wroe. Taverna: lessons in creating a workflow
environment for the life sciences. In Concurrency and Computation: Practice
and Experience, volume 18, pages 1067–1100, Aug. 2006.

[8] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning
system. In VLDB, pages 381–390, 2001.

[9] J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. Technical Report 2004-40, 2004.

