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ABSTRACT
Predictive models are often used for real-time decision making.
However, typical machine learning techniques ignore feature evalu-
ation cost, and focus solely on the accuracy of the machine learning
models obtained utilizing all the features available. We develop al-
gorithms and indexes to support cost-sensitive prediction, i.e., mak-
ing decisions using machine learning models taking feature evalu-
ation cost into account. Given an item and a online computation
cost (i.e., time) budget, we present two approaches to return an ap-
propriately chosen machine learning model that will run within the
specified time on the given item. The first approach returns the op-
timal machine learning model, i.e., one with the highest accuracy,
that runs within the specified time, but requires significant up-front
precomputation time. The second approach returns a possibly sub-
optimal machine learning model, but requires little up-front pre-
computation time. We study these two algorithms in detail and
characterize the scenarios (using real and synthetic data) in which
each performs well. Unlike prior work that focuses on a narrow
domain or a specific algorithm, our techniques are very general:
they apply to any cost-sensitive prediction scenario on any machine
learning algorithm.

1. INTRODUCTION
Predictive models are ubiquitous in real-world applications: ad-

networks predict which ad the user will most likely click on based
on the user’s web history, Netflix uses a user’s viewing and vot-
ing history to pick movies to recommend, and content moderation
services decide if an uploaded image is appropriate for young chil-
dren. In these applications, the predictive model needs to process
the input data and make a prediction within a bounded amount of
time, or risk losing user engagement or revenue [4, 13, 34].

Unfortunately, traditional feature-based classifiers take a one-
model-fits all approach when placed in production, behaving the
same way regardless of input size or time budget. From the classi-
fier’s perspective, the features used to represent an input item have
already been computed, and this computation process is external to
the core task of classification. This approach isolates and simpli-
fies the core task of machine learning, allowing theorists to focus on
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tasks like quick learning convergence and accuracy. But it leaves
out many important aspects of production systems can be just as
important as accuracy, such as tunable prediction speed.

In reality, the cost of computing features can easily dominate
prediction time. For example, a content moderation application
may use a support-vector machine to detect inappropariate images.
At runtime, SVMs need only perform a single dot-product between
a feature vector and pre-computed weight vector. But computing
the feature vector may require several scans of an image which may
take longer than an alotted time budget.

If feature computation is the dominating cost factor, one might
intuitively accomodate time constraints by computing and using
only a subset of features available. But selecting which subset to
use at runtime—and guaranteeing that a model is available that was
trained on that subet—is made challenging by a number of factors.
Features vary in predictive power, e.g. skin tone colors might more
accurately predict inappropriate images than image size. They also
vary in prediction cost, e.g. looking up the image size is much
faster than computing a color histogram over an entire image. This
cost also varies with respect to input size—the size feature may be
O(1), stored in metadata, while the histogram may beO(r×c). Fi-
nally for any n features, 2n distinct subsets are possible, each with
their aggregate predictive power and cost, and each potentially re-
quiring its own custom training run. As the number of potential
features grows large, training a model for every possible subset is
clearly prohibitively costly. All of these reasons highlight why de-
ploying real-time prediction, while extremely important, is a par-
ticularly challenging problem.

Existing strategies of approaching this problem (see Section 6)
tend to be either tightly coupled to a particular prediction task or
to a particular mathematical model. While these approaches work
for a particular problem, they are narrow in their applicability: if
the domain (features) change or the machine learning model is
swapped for new one (e.g., SVM for AdaBoost), the approach will
no longer work.

In this paper, we develop a framework for cost-sensitive real-
time classification as a wrapper over “off-the-shelf” feature-based
classifiers. That is, given an item that needs to be classified or
categorized in real time and a cost (i.e., time) budget for feature
evaluation, our goal is to identify features to compute in real time
that are within the budget, identify the appropriate machine learn-
ing model that has been learned in advance, and apply the model
on the extracted features.

We take a systems approach by decoupling the problem of cost-
sensitive prediction from the problem of machine learning in gen-
eral. We present an algorithm for cost sensitive prediction that op-
erates on any feature-based machine learning algorithm as a black
box. The few assumptions it makes reasonably transfer between



different feature sets and algorithms (and are justified herein). This
decoupled approach is attractive for the same reason that machine
learning literature did not originally address such problems: it seg-
ments reasoning about the core tasks of learning and prediction
from system concerns about operationalizing and scaling. Addi-
tionally, encapsulating the details of classification as we do ensures
advances in machine learning algorithms and feature engineering
can be integrated without change to the cost-sensitivity apparatus.

Thus, our focus in this paper is on systems issues underlying this
wrapper-based approach, i.e., on intelligent indexing and pruning
techniques to enable rapid online decision making and not on the
machine learning algorithms themselves. Our contribution is two
approaches to this problem as well as new techniques to mitigate
the challenges of each approach. These two approaches represents
two ends of a continuum of approaches to tackle the problem of
model-agnostic cost sensitivity:
• Our POLY-DOM approach yields optimal solutions but re-

quires significant offline pre-computation,
• Our GREEDY approach yields relatively good solutions but

does not require significant offline pre-computation.
First, consider the GREEDY approach: GREEDY, and its two sub-
variants GREEDY-ACC and GREEDY-COST (described in Section 4),
are all simple but effective techniques adapted from prior work by
Xu et al. [45], wherein the technique only applied to a sub-class
of SVMs [15]. Here, we generalize the techniques to apply to any
machine learning classiciation algorithm as a black box. GREEDY
is a “quick and dirty” technique that requires little precomputation,
storage and retrieval, and works well in many settings.

Then, consider our POLY-DOM approach, which is necessary
whenever accuracy is paramount, a typical scenario in critical ap-
plications like credit card fraud detection, system performance mon-
itoring, and ad-serving systems. In this approach, we conceptually
store, for each input size, a skyline of predictive models along the
axes of total real-time computation cost vs. accuracy. Then, given
an input of that size, we can simply pick the predictive model along
the skyline within the total real-time computation cost budget, and
then get the best possible accuracy.

However, there are many difficulties in implementing this skyline-
based approach:
• Computing the skyline in a naive fashion requires us to com-

pute for all 2|F|, subsets of features (where F is the set of all
features) the best machine learning algorithm for that set, and
the total real-time computation time (or cost). If the number
of features is large, say in the 100s or the 1000s, comput-
ing the skyline is impossible to do, even with an unlimited
amount of time offline. How do we intelligently reduce the
amount of precomputation required to find the skyline?
• The skyline, once computed, will require a lot of storage.

How should this skyline be stored, and what index structures
should we use to allow efficient retrieval of individual models
on the skyline?
• Computing and storing the skyline for each input size is sim-

ply infeasible: an image, for instance, can vary between 0 to
70 Billion Pixels (the size of the largest photo on earth [1]),
we simply cannot store or precompute this much informa-
tion. What can we do in such a case?

To deal with the challenges above, POLY-DOM use a dual-pronged
solution, with two precomputation steps:
• Feature Set Pruning: We develop a number of pruning tech-

niques that enable us to minimize the number of feature sets
for which we need to learn machine learning algorithms. Our
lattice pruning techniques are provably correct under some
very reasonable assumptions, i.e., they do not discard any

feature sets if those feature sets could be potentially optimal
under certain input conditions. We find that our pruning tech-
niques often allow us to prune up to 90% of the feature sets.
• Polydom Index: Once we gather the collection of feature sets,

we develop an index structure that allows us to represent the
models learned using the feature sets in such a way that en-
ables us to perform efficient retrieval of the optimal machine
learning model given constraints on cost and input size. This
index structure relies on reasoning about polynomials that
represent cost characteristics of feature sets as a function of
input size.

Overall, our approach offers a systems perspective to an increas-
ingly important topic in the deployment of machine learning sys-
tems. The higher-level goal is to isolate and develop the mecha-
nisms for storage and delivery of cost-sensitive prediction without
having to break the encapsulation barrier that should surround the
fundamental machinery of machine learning. Our techniques could
be deployed alongside the existing algorithms in a variety of real-
time prediction scenarios, including:
• An ad system needs to balance between per-user ad cus-

tomization and latency on the small scale, and allocate com-
putational resources between low-value and high-value ad
viewers on the aggregate scale.
• Cloud-based financial software needs to run predictive mod-

els on portfolios of dramatically different input size and value.
A maximum latency on results may be required, but the best
possible model for each time and input size pairing is finan-
cially advantageous.
• An autopilot system in an airplane has a limited time to re-

spond to an error. Or more broadly, system performance
monitors in a variety of industrial systems have fixed time
to decide whether to alert a human operator of a failure.
• A mobile sensor has limited resources to decide if an error

needs to be flagged and sent to the central controller.
In the rest of the paper, we will first formally present our problem

variants in Section 2, then describe our two-pronged POLY-DOM
solution in Section 3 and our “quick and dirty” GREEDY solution
in Section 4, and finally present our experiments on both synthetic
and real-world datasets in Section 5.

2. PROBLEM DESCRIPTION
We begin by describing some notation that will apply to the rest

of the paper, and then we will present the formal statement of the
problems that we study.

Our goal is to classify an item (e.g., image, video, text) x dur-
ing real-time. We assume that the size of x, denoted |x|, would
be represented using a single number or dimension n, e.g., num-
ber of words in the text. Our techniques also apply to the scenario
when the size can be represented using a vector of dimensions: for
example, (length, breadth), for an image; however, for ease of ex-
position, we focus on the single dimension scenario. The entire set
of features we can evaluate on x is F ; each individual feature is
denoted fi, while a non-empty set of features is denoted Fj .

We assume that we have some training data, denoted T , wherein
every single feature fi ∈ F is evaluated for each item. Since train-
ing is done offline, it is not unreasonable to expect that we have the
ability to compute all the features on each item. In addition, we
have some testing data, denoted T ′, where once again every single
feature is evaluated for each item. We use this test data to estimate
the accuracy of the machine learning models we discover offline.

Cost Function: We assume that evaluating a feature on an item x
depends only on the feature that is being computed, and the size of



the item |x|. We denote the cost of computing fi on x as: c(fi, |x|).
We can estimate c(fi, n) during pre-processing time by running
the subroutine corresponding to feature evaluation fi on varying
input sizes. Our resulting expression for c(fi, n) could either be a
constant (if it takes a fixed amount of time to evaluate the feature,
no matter the size), or could be a function of n, e.g., 3n2 + 50, if
evaluating a feature depends on n.

Then, the cost of computing a set of features Fi on x can be
computed as follows:

c(Fi, |x|) =
∑
f∈Fi

c(f, |x|) (1)

We assume that each feature is computed independently, in sequen-
tial order. Although there may be cases where multiple features can
be computed together (e.g., multiple features can share scans over
an image simultaneously), we expect that users provide the features
as “black-box” subroutines and do not want to place additional bur-
den by asking users to provide subroutines for combinations of fea-
tures as well. That said, our techniques will equally well apply to
the scenario when our cost model is more general than Equation 1,
or if users have provided subroutines for generating multiple fea-
ture values simultaneously (e.g., extracting a word frequency vector
from a text document).

Accuracy Function: We model the machine learning algorithm
(e.g., SVM, decision tree, naive-bayes) as a black box function sup-
plied by the user. This algorithm takes as input the entire training
data T , as well as a set of features Fi, and outputs the best model
M(Fi) learned using the set of features Fi. We denote the accu-
racy ofM(Fi) inferred on the testing data T ′ as a(Fi), possibly
using k-fold cross-validation. We assume that the training data is
representative of the items classified online (as is typical), so that
the accuracy of the modelM(Fi) is still a(Fi) online.

Note that we are implicitly assuming that the accuracy of the
classification model only depends on the set of features inferred
during test time, and not on the size of the item. This assumption
is typically true in practice: whether or not an image needs to be
flagged for moderation is independent of the size of the image.

Characterizing a Feature Set: Since we will be dealing often with
sets of features at a time, we now describe what we mean by char-
acterizing a feature set Fi. Overall, given Fi, as discussed above,
we have a black box that returns
• a machine learning model learned on some or all the features

in Fi, represented asM(Fi).
• a(Fi), i.e., an estimate of the accuracy of the modelM(Fi)

on test data T ′.
In addition, we can estimate c(Fi, n), i.e., the cost of extracting the
features to apply the model at test time as a function of the size of
the item n. Note that unlike the last two quantities, this quantity
will be expressed in symbolic form. For example, c(Fi, n) could
be an expression like 3n2 + 4n logn+ 7n.

Characterizing a feature set Fi thus involves learning all three
quantities above for Fi: M, a, c. For the rest of the paper, we
will operate on feature sets, implicitly assuming that a feature set
is characterized by the best machine learning model for that feature
set, an accuracy value for that model, and a cost function.

Problem Statements: The most general version of the problem is
when c (i.e., the cost or time constraint) and the size n of an item x
are not provided to us in advance:

PROBLEM 1 (PROB-GENERAL). Given F , T , T ′ at prepro-
cessing time, compute classification models and indexes such that
the following task can be completed at real-time:

• Given x, |x| = n, and a cost constraint c at real time, iden-
tify a set Fi ∈ F ′ = {F ⊆ F | c(F, n) ≤ c} such that
∀F∈F′α× a(Fi) ≥ a(F ) and returnM(Fi)(x).

That is, our goal is to build classification models and indexes such
that given a new item at real time, we select a feature set Fi and
the corresponding machine learning modelM(Fi) that both obeys
the cost constraint, and is within α ≥ 1× of the best accuracy
among all feature sets that obey the cost constraint. The reason we
care about α > 1 is that, in contrast to a hard cost constraint, a
slightly lower accuracy is often acceptable as long as the amount
of computation required for computing, storing, and retrieving the
appropriate models is manageable. We will consider α = 1, i.e.,
the absolute best accuracy, as a special case; however, for most of
the paper, we will consider the more general variants.

There are two special cases of the general problem that we will
consider. The first special case considers the scenario when the
input size is provided up-front, e.g., when Yelp fixes the size of
profile images uploaded to the website that need to be moderated.

PROBLEM 2 (PROB-n0-FIXED). Given F , T , T ′ and a fixed
n0 at preprocessing time, compute classification models and in-
dexes such that the following task can be completed at real-time:
• Given x, |x| = n0, and a cost constraint c at real time, iden-

tify the set Fi ∈ F ′ = {F ⊆ F | c(F, n0) ≤ c} such that
∀F∈F′α× a(Fi) ≥ a(F ) and returnM(Fi)(x).

We also consider the version where c0 is provided in advance but
the item size n is not, e.g., when an aircraft needs to respond to any
signals within a fixed time.

PROBLEM 3 (PROB-c0-FIXED). Given c0,F , T , T ′ at prepro-
cessing time, compute classification models and indexes such that
the following task can be completed at real-time:
• Given x, |x| = n, at real time, identify the set Fi ∈ F ′ =
{F ⊆ F | c(F, n) ≤ c0} such that ∀F∈F′α×a(Fi) ≥ a(F )
and returnM(Fi)(x).

Reusing Skyline Computation is Incorrect: We now argue that
it is not sufficient to simply compute the skyline of classification
models for a fixed item size and employ that skyline for all n, c.
For the following discussion, we focus on α = 1; the general α
case is similar. Given a fixed n = n0, we define the n0−skyline
as the set of all feature sets that are undominated in terms of cost
and accuracy (or equivalently, error, which is 1− accuracy). A
feature set Fi is undominated if there is no feature set Fj , where
c(Fj , n0) < c(Fi, n0) and a(Fi) ≤ a(Fj), and no feature set
Fj where c(Fj , n0) ≤ c(Fi, n0) and a(Fi) < a(Fj)

1. A naive
strategy is to enumerate each feature set F ⊆ F , and characterize
each F by its cross-validation accuracy and average extraction cost
over the training dataset. Once the feature sets are charcterized,
iterate through them by increasing cost, and keep the feature sets
whose accuracy is greater than any of the feature sets preceeding it.
The resulting set is the n0−skyline. However, it is every expensive
to enumerate and characterize all feature sets (especially when the
number of features is large), and one of our key contributions will
be to avoid this exhaustive enumeration. But for the purposes of
discussion, let us assume that we have the n0−skyline computed.
Note that the skyline feature sets are precisely the ones we need
to consider as possible solutions during real-time classification for
n = n0 for various values of c0.

1Notice that the≤ operator is placed in different clauses in the two
statements.



Then, one approach to solving Problem 1 could be to simply
reuse the n0-skyline for other n. However, this approach is incor-
rect, as depicted by Figure 1. Figure 1(a) depicts the cost and error
of each feature set and the error vs. cost skyline curve for n = n0,
while Figure 1(b) depicts what happens when n changes from n0

to a larger value n1 (the same holds when the value changed to a
smaller value): as can be seen in the figure, different feature sets
move by different amounts, based on the cost function c(Fi, n).
This is because different polynomials behave differently as n is
varied. For instance, 2n2 is less than 3n + 32 when n is small,
however it is significantly larger for big values of n. As a result,
a feature set which was on the skyline may now no longer be on
the skyline, and another one that was dominated could suddenly
become part of the skyline.

cost

errors
F

F

F

F
F

F

F

F

F

F

cost

errors
F

F

F

F
F

F

F

F

F

F

Figure 1: (a) Offline computation of all F . (b) Points skew across the cost axis as n
changes.

Learning Algorithm Properties: We now describe a property about
machine learning algorithms that we will leverage in subsequent
sections. This property holds because even in the worst case, adding
additional features simply gives us no new useful information that
can help us in classification.

AXIOM 2.1 (INFORMATION-NEVER-HURTS). If Fi ⊂ Fj ,
then a(Fi) ≤ a(Fj)

While this property is known by the machine learning community
to be anecdotally true [11], we experimentally validate this in our
experiments. In fact, even if this property is violated in a few cases,
our POLY-DOM algorithm can be made more robust by taking that
into account, as we will see in Section 3.1

3. POLY-DOM SOLUTION
Our solution follows three steps:
• Feature Set Pruning: First, we will start by constructing what

we call as a candidate set, that is, the set of all feature sets
(and corresponding machine learning models) that will be
solutions to Problem 1. As a side effect, we will find a so-
lution to Problem 2. The candidate set will be a carefully
constructed superset of the skyline feature sets, so that we do
not discard any feature sets that could be useful for any n.
We will describe this in Section 3.1.
• Polydom Index Construction: In Section 3.2, we describe a

new data-structure for Problem 1, called the poly-dominance
index, which compactly represents the candidate set and al-
lows it to be indexed into given a specific item size n and
budget c during query time. In particular, we would like to
organize the candidate set so that it can be efficiently probed
even for large candidate sets size.
• Online Retrieval: Lastly, we describe how the poly-dominance

index is accessed during query time in Section 3.3.

3.1 Offline: Constructing the Candidate Set
We will construct the candidate set using a bi-directional search

on the lattice of all subsets of features, depicted in Figure 2.
When a sequence of features is listed, this sequence corresponds

to the feature set containing those features. In the figure, feature
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Figure 2: Lattice: ? indicates the nodes that will be expanded for α = 1; † indicates
the nodes that will be expanded for α = 1.1

sets are listed along with their accuracies (listed below the feature
set)2. An edge connect two features sets that differ in one feature.
For now, ignore the symbols ?, †, we will describe their meaning
subsequently. The feature set corresponding to F is depicted at the
top of the lattice, while the feature set corresponding to the empty
set is depicted at the bottom. The feature sets in between have 0 to
|F| features. In the following we use feature sets and nodes in the
lattice interchangably.

Bidirectional Search: At one extreme, we have the empty set {},
and at the other extreme, we have F . We begin by learning and
characterizing the best machine learning model forF = {}, and for
F = F : i.e., we learn the best machine learning model, represented
asM(F ), and learn the accuracy a(F ) (listed below the node) and
c(F, n) for the model3 We call this step expanding a feature set,
and a feature set thus operated on is called an expanded feature set.

At each round, we expand the feature sets in the next layer, in
both directions. We stop once we have expanded all nodes. In our
lattice in Figure 2, we expand the bottom and top layer each consist-
ing of 1 node, following which, we expand the second-to-bottom
layer consisting of 4 nodes, and the second-to-top layer again con-
sisting of 4 nodes, and then we finally expand the middle layer
consisting of 6 nodes.

However, notice that the total number of nodes in the lattice is
2|F|, and even for relatively small F , we simply cannot afford to
expand all the nodes in the lattice. Therefore, we develop pruning
conditions to avoid expanding all the nodes in the lattice. Note that
all the pruning conditions we develop are guaranteed to return an
accurate solution. That is, we do not make approximations at any
point that take away the optimality of the solution.

Dominated Feature Sets: We now define what we mean for a fea-
ture set to dominate another.

DEFINITION 3.1 (DOMINANCE). A feature set Fi dominates
a feature set Fj if ∀n, c(Fi, n)≤ c(Fj , n) and α×a(Fi) ≥ a(Fj)

As an example from Figure 2, consider node f3f4 and f2f3f4 on
the right-hand extreme of the lattice: the accuracies of both these
feature sets is the same, while the cost of f2f3f4 is definitely higher
(since an additional feature f2 is evaluated). Here, we will always
prefer to use f3f4 over f2f3f4, and as a result, f2f3f4 is dominated
by f2f3.
2We have chosen accuracy values that satisfy Axiom 2.1 in the pre-
vious section.
3Note that the cost of a model (i.e. featureset) is simply the sum of
the individual features and can re-use previously computed costs.



Overall, a feature set Fj that is dominated is simply not under
consideration for any n, because it is not going to be the solution to
Problems 1, 2, or 3, given that Fi is a better solution. We formalize
this as a theorem:

THEOREM 3.2. A feature set that is dominated cannot be the
solution to Problems 1, 2, or 3 for any n.

Given the property above, we need to find domination rules that al-
low us to identify and discard dominated feature sets. In particular,
in our lattice, this corresponds to not expanding feature sets.

Pruning Properties: Our first property dictates that we should not
expand a feature set that is strictly “sandwiched between” two other
feature sets. It can be shown that any such feature set is dominated,
and therefore, using Theorem 3.2, can never be a solution to any of
the problems listed in the previous section.

PROPERTY 3.3 (SANDWICH-PROPERTY). If Fi ⊂ Fk, and
α× a(Fi) ≥ a(Fk), then no Fj such that Fi ⊂ Fj ⊂ Fk, needs to
be expanded.

Intuitively, if there is a feature set Fi that dominates an Fj , while
Fi ⊂ Fj , then all other feature sets betweeen Fi and Fj are also
dominated. Consider Figure 2, with α = 1, let Fi = f3, and
Fk = f2f3f4, since a(Fi) = a(Fk), feature sets Fj correspond-
ing to f2f3 and f3f4 need not be expanded: in the figure, both
these feature sets have precisely the same accuracy as f3, but have
a higher cost.

In Figure 2 once again for α = 1, let us consider how many ex-
pansions the previous property saves us while doing bidirectional
search: We first expand F and {}, and then we expand all nodes in
the second-to-top layer and the second-to-bottom layer. Then, from
the next layer, f2f3 and f3f4 will not be expanded (using the ar-
gument from the previous paragraph), while the rest are expanded.
Thus, we save two expansions. The expanded nodes in the lattice
are denoted using ?s.

Now, on changing α slightly, the number of evaluations goes
down rapidly. The nodes expanded in this case are denoted using
a †. Let us consider α = 1.1. Once again, nodes in the top two
and bottom two layers are expanded. However, only f1f2 in in the
middle layer needs to be expanded. This is because:
• f1f3 and f1f4 are sandwiched between f1 and f1f3f4
• f2f3 and f2f4 are sandwiched between f2 and f2f3f4
• f2f3 and f3f4 are sandwiched between f3 and f2f3f4

The previous property is hard apply directly (e.g., before expanding
every feature set we need to verify if there exists a pair of feature
sets that sandwich it). Next, we describe a property that specifies
when it is safe to stop expanding all non-expanded ancestors of a
specific node.

PROPERTY 3.4 (COVERING-PROPERTY). If Fi ⊂ Fki ,∀i ∈
1 . . . r such that ∪i∈1...rFki = F , and α× a(Fi) ≥ a(Fki), ∀i ∈
1 . . . r, then no feature set sandwiched between Fi and Fki needs
to be expanded.

This property states if any set of feature sets Fki 1) contain Fi,
2) in aggregate covers all the features in F and 3) are dominated
by Fi, then all feature sets between Fi and Fki do not need to be
expanded. The inverse property for pruning descendents also holds.

We use this property to extend the bidirectional search with an
additional pruning step. Let the top frontier Ftop be the set of fea-
ture sets expanded from the top for which no child feature set has
been expanded, and let Fbot be similarly defined from the bottom.
By directly applying the Covering-Property, we can prune the par-
ents of F ∈ Fbot if ∀F ′ ∈ Ftop F ⊆ F ′, F dominates F ′. We can

similarly use the inverse of the property to prune feature sets in the
top frontier.

Properties of Expanded Nodes: We have the following theorem,
that is a straightforward consequence of Property 3.3:

THEOREM 3.5. The set of expanded nodes form a superset of
the skyline nodes for any n.

In figure 2, the set of expanded nodes (denoted by ? for α = 1 and
† for α = 1.1) are the ones relevant for any n.

Candidate Nodes: Given the expanded set of nodes, two prop-
erties to allow us to prune away some of the expanded but domi-
nated nodes to give the candidate nodes. Both these properties are
straightforward consequences of the definition of dominance.

PROPERTY 3.6 (SUBSET PRUNING-PROPERTY). IfFi ⊂ Fk,
and α × a(Fi) ≤ a(Fk), then Fk does not need to be retained as
a candidate

For instance, even though f2f3f4 and f3 are both expanded, f2f3f4
does not need to be retained as a candidate node when f3 is present
(for any α); also, f1f3f4 does not need to be retained as a candidate
node when f1 is present for α = 1.1.

The next property is a generalization of the previous, when we
have a way of evaluating polynomial dominance.

PROPERTY 3.7 (POLY-DOM PRUNING-PROPERTY). If c(Fi, x)
< c(Fk, x), ∀x ≥ 0, and α × a(Fi) ≤ a(Fk), then Fk does not
need to be retained as a candidate

The next theorem states that we have not made any incorrect deci-
sions until this point, i.e., the set of candidate nodes includes all the
nodes that are solutions to Problems 1, 2, 3 for all n.

THEOREM 3.8. The set of candidate nodes form a superset of
the skyline nodes for any n.

Algorithm: The pseudocode for the algorithm can be found in the
appendix split into: Algorithm 2 (wherein the lattice is traversed
and the nodes are expanded) and Algorithm 1 (wherein the domi-
nated expanded nodes are removed to give the candidate nodes).

In brief, Algorithm 2 maintains two collections: frontierTop and
frontierBottom, which is the frontier (i.e., the boundary) of already
expanded nodes from the top and bottom of the lattice respectively.
The two collections activeTop and activeBottom contain the next
set of nodes to be expanded. When a node is expanded, its children
in the lattice are added to activeTop if the node is expanded “from
the top”, while its parents in the lattice are added to activeBottom
if the node is expanded “from the bottom”.

Note that there may be smart data structures we could use to
check if a node is sandwiched or not, or when enumerating the can-
didate set. Unfortunately, the main cost is dominated by the cost
for expanding a node (which involves training a machine learn-
ing model given a set of features and estimating its accuracy), thus
these minor improvements do not improve the complexity much.

Discussion: When the number of features in F are in the thou-
sands, the lattice would be massive. In such cases, even the number
of expanded nodes can be in the millions. Expanding each of these
nodes can take a significant time, since we would need to run our
machine learning algorithm on each node (i.e., feature set). In such
a scenario, we have two alternatives: (a) we apply a feature selec-
tion algorithm [32] that allows us to bring the number of features
under consideration to a smaller, more manageable number, or; (b)
we apply our pruning algorithm in a progressive modality. In this
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Figure 3: Incremental Poly-Dom Creation

modality, a user provides a precomputation pruning cost budget,
and the pruning algorithm picks the “best α” to meet the precom-
putation cost budget (i.e., the smallest possible α for which we can
apply the lattice pruning algorithm within the precomputation cost
budget.) The approach is the following: we start with a large α
(say 2), and run the lattice pruning algorithm. Once complete, we
can reduce α by a small amount, and rerun the lattice pruning al-
gorithm, and so on, until we run out of the precomputation cost
budget. We can make use of the following property:

PROPERTY 3.9. The nodes expanded for α1, 1 ≤ α1 < α2 ≤
2 is a superset of the nodes expanded for α2.

Thus, no work that we do for larger αs are wasted for smaller αs: as
a result, directly using the α that is the best for the precomputation
cost budget would be equivalent to the above procedure, since the
above procedure expands no more nodes than necessary.

Anti-Monotonicity: Note that there may be practical scenarios
where the assumption of monotonicity, i.e., Axiom 2.1, does not
hold, but instead, a relaxed version of monotonicity holds, that is,

AXIOM 3.10 (INFORMATION-NEVER-HURTS-RELAXED). If
Fi ⊂ Fj , then a(Fi) ≤ a(Fj) + e

Here, if Fi is a subset of Fj , then a(Fi) cannot be larger than
a(Fj) + e. Intuitively, the violations of monotonicity, if any are
small—smaller than e (we call this the error in the monotonicity.)
Note that when e = 0, we have Axiom 2.1 once again.

In such a scenario, only the lattice construction procedure is
modified by ensuring that we do not prematurely prune away nodes
(say, using the sandwich property) that can still be optimal. We use
the following modified sandwich property:

PROPERTY 3.11 (SANDWICH-PROPERTY-RELAXED). IfFi ⊂
Fk, and α×(a(Fi)−e) ≥ a(Fk), then no Fj such that Fi ⊂ Fj ⊂
Fk, needs to be expanded.

With the above property, we have a more stringent condition, i.e.,
that α×(a(Fi)−δ) and not simply α×a(Fi) has to be greater than
a(Fk). As a result, fewer pairs of nodes i, k qualify, and as a result,
fewer nodes j : Fi ⊂ Fj ⊂ Fk are pruned without expansion.

Subsequently, when deciding whether to remove some of the ex-
panded nodes to give candidate nodes, we have the true accuracies
of the expanded nodes, we no longer need to worry about the vio-
lations of monotonicity.

3.2 Offline: Constructing the Index
We begin by collecting the set of candidate nodes from the pre-

vious step. We denote the set of candidate nodes as C, |C| = k. We
now describe how to construct the poly-dom index.

Alternate Visualization: Consider an alternate way of visualizing
the set of candidate nodes, depicted in Figure 3(left). Here, we de-
pict the cost c(Fi, n) for each of the candidate nodes, as a function
of n. Also labeled with each cost curve is the accuracy. Recall that
unlike cost, the accuracy stays constant independent of the input

size n. We call each of the curves corresponding to the candidate
nodes as candidate curves. We depict in our figure four candidate
curves, corresponding to feature sets F1, F2, F3, F4. In the figure,
we depict five ‘intersection points’, where these candidate curves
cross each other. We denote, in ascending order, the intersection
points, as n1 < . . . < nr . In Figure 3(left), r = 5. It is easy to see
that the following holds:

LEMMA 3.12. For all intersection points n1 < . . . < nr be-
tween candidate curves, storing the skyline for the following ranges
(−∞, n1), [n1, n2), . . . , [nr−1, nr), [nr,∞) is sufficient for Prob-
lems 1,2, 3, since for any such range, the skyline is fixed.

For (−∞, n1), F4 has accuracy 0.8, F3 has accuracy 0.65, F2 has
accuracy 0.76, and F1 has accuracy 0.7. The skyline of these four
candidate sets for n < n1 is F4, F2, F1; F3 is dominated by F2

and F1 both of which have lower cost and higher accuracy.
The lemma above describes the obvious fact that the relation-

ships between candidate curves (and therefore nodes) do not change
between the intersection points, and therefore, we only need to
record what changes at each intersection point. Unfortunately, with
r candidate curves, there can be as many as r2 intersection points.

Thus, we have a naive approach to compute the index that allows
us to retrieve the optimal candidate curve for each value of n0, c0:
• for each range, we compute the skyline of candidate nodes,

and maintain it ordered on cost
• when n0, c0 values are provided at query time, we perform

a binary search to identify the appropriate range for n0, and
do a binary search to identify the candidate node that that
respects the condition on cost.

Our goal, next, is to identify ways to prune the number of intersec-
tion points so that we do not need to index and maintain the skyline
of candidate nodes for many intersection points.

Traversing Intersection Points: Our approach is the following:
We start with n = 0, and order the curves at that point in terms of
cost. We maintain the set of curves in an ordered fashion through-
out. Note that the first intersection point after the origin between
these curves (i.e., the one that has smallest n, n > 0) has to be an
intersection of two curves that are next to each other in the ordering
at n = 0. (To see this, if two other curves intersected that were not
adjacent, then at least one of them would have had to intersect with
a curve that is adjacent.) So, we compute the intersection points for
all pairs of adjacent curves and maintain them in a priority queue
(there are at most k intersection points).

We pop out the smallest intersection point from this priority queue.
If the intersection point satisfies certain conditions (described be-
low), then we store the skyline for that intersection point. We call
such an intersection point an interesting intersection point. If the
point is not interesting, we do not need to store the skyline for that
point. Either way, when we have finished processing this intersec-
tion point, we do the following: we first remove the intersection
point from the priority queue. We then add two more intersection
points to the priority queue, corresponding to the intersection points
with the new neighbors of the two curves that intersected with each
other. Subsequently, we may exploit the property that the next in-
tersection point has to be one from the priority queue of intersection
points of adjacent curves. We once again pop the next intersection
point from the priority queue and the process continues.

The pseudocode for our procedure is listed in Algorithm 3 in
the appendix. The array sortedCurves records the candidate curves
sorted on cost, while the priority queue intPoints contains the inter-
section points of all currently adjacent curves. As long as intPoints
is not empty, we keep popping intersection points from it, update
sortedCurves to ensure that the ordering is updated, and add the
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point to the list of skyline recomputation points if the point is an
interesting intersection point. Lastly, we add the two new intersec-
tions points of the curves that intersected at the current point.

Pruning Intersection Points: Given a candidate intersection point,
we need to determine if we need to store the skyline for that inter-
section point. We now describe two mechanisms we use to prune
away “uninteresting” intersection points. First, we have the follow-
ing theorem, which uses Figure 4:

THEOREM 3.13. We assume that for no two candidate nodes,
the accuracy is same. The only intersection points (depicted in
Figure 4, where we need to recompute the skyline are the following:
• Scenario 1: Curve 1 and 2 are both on the skyline, and α1 >
α2. In this case, the skyline definitely changes, and therefore
the point is an interesting intersection point.
• Scenario 2: Curve 1 is not on the skyline while Curve 2 is.

Here, we have two cases: if α1 > α2 then the skyline defi-
nitely changes, and if α1 < α2, then the skyline changes iff
there is no curve below Curve 2, whose accuracy is greater
than α2.

As an example of how we can use the above theorem, consider
Figure 3, specifically, intersection point n1 and n2. Before n1,
the skyline was [F1, F2, F4], with F3 being dominated by F1, F2.
At n1, F1 and F2 intersect. Now, based on Theorem 3.13, since
the lower curve (based on cost) before the intersection has lower
accuracy, the curve corresponding to F2 now starts to dominate the
curve corresponding to F1, and as a result, the skyline changes.
Thus, this intersection point is indeed interesting.

Between n1 and n2, the skyline was [F2, F4], since F3 and F1

are both dominated by F2 (lower cost and higher accuracy). Now,
at intersection point n2, curves F3 and F1 intersect. Note that
neither of these curves are on the skyline. Then, based on Theo-
rem 3.13, we do not need to recompute the skyline for n2.

Recall that we didn’t use α approximation at all. Since we al-
ready used α to prune candidate nodes in the first step, we do not
use it again to prune potential curves or intersection points, since
that may lead to incorrect results. In our experience, the lattice
pruning step is more time-consuming (since we need to train a ma-
chine learning model for each expanded node), so it is more ben-
eficial to use α in that step. We leave determining how to best
integrate α into the learning algorithms as future work. Finally, the
user can easily integrate domain knowledge, such as the distribu-
tion of item sizes, into the algorithm to further avoid computing
and indexing intemediate intersection points.

Determining the Skyline: As we are determining the set of inter-
esting intersection points, it is also easy to determine and maintain
the skyline for each of these points. We simply walk up the list of
candidate nodes at that point, sorted by cost, and keep all points
that have not been dominated by previous points. (We keep track
of the highest accuracy seen so far.)

Index Construction: Thus, our polydom indexing structure is ef-
fectively is a two-dimensional sorted array, where we store the sky-
line for different values of n. We have, first, a sorted array corre-
sponding to the sizes of the input. Attached to each of these loca-

tions is an array containing the skyline of candidate curves.
For the intersection curve depicted in Figure 3, the index that we

construct is depicted in Figure 5.
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Figure 5: Poly-Dom Index for the feature sets in Figure 3

3.3 Online: Searching the Index
Given an instance of Problem 1 at real-time classification time,

finding the optimal model is simple, and involves two steps. We
describe these steps as it relates to Figure 5.
• We perform a binary search on the ni ranges, i.e., horizon-

tally on the bottom most array, to identify the range within
which the input item size n0 lies.
• We then perform a binary search on the candidate nodes, i.e.,

vertically for the node identified in the previous step, to find
the candidate node for which the cost is the largest cost is
less than the target cost c. Note that we can perform binary
search because this array is sorted in terms of cost. We then
return the model corresponding to the given candidate node.

Thus, the complexity of searching for the optimal machine learn-
ing model is: O(log tint + log tcand): where tint is the number of
interesting intersection points, while tcand is the number of candi-
date nodes on the skyline.

4. GREEDY SOLUTION
The second solution we propose, called GREEDY, is a simple

adaptation of the technique from Xu et al. [45]. Note that Xu et
al.’s technique does not apply to generic machine learning algo-
rithms, and only works with a specific class of SVMs; hence we
had to adapt it to apply to all machine learning algorithms as a
black box. Further, this algorithm (depicted in Algorithm 4 in the
appendix) only works with a single size; multiple sizes are handed
as described subsequently. For now, we assume that the following
procedure is performed with the median size of items.

Expansion: Offline, the algorithm works as follows: for a range of
values of λ ∈ L, the algorithm does the following. For each λ, the
algorithm considers adding one feature at a time to the current set
of features that improves the most the function

gain = (increase in accuracy) — λ× (increase in cost)

This is done by considering adding one feature at a time, expanding
the new set of features, and estimating its accuracy and cost. (The
latter is a number rather than a polynomial — recall that the proce-
dure works on a single size of item.) Once the best feature is added,
the corresponding machine learning model for that set of features is
recorded. This procedure is repeated until all the features are added,
and then repeated for different λs. The intuition here is that the λ
dictates the priority order of addition of features: a large λ means a
higher preference for cost, and a smaller λ means a higher prefer-
ence for accuracy. Overall, these sequences (one corresponding to
every λ ∈ L) correspond to a number of depth-first explorations of
the lattice, as opposed to POLY-DOM, which explored the lattice in
a breadth-first manner.

Indexing: We maintain two indexes, one which keeps track of the
sequence of feature sets expanded for each λ, and one which keeps



the skyline of accuracy vs. cost for the entire set of feature sets. The
latter is sorted by cost. Notice that since we focus on a single size,
for the latter index, we do not need to worry about cost functions,
we simply use the cost values for that size.

Retrieval: Online, when an item is provided, the algorithm per-
forms a binary search on the skyline, picks the desired feature set
that would fit within the cost budget. Then, we look up the λ cor-
responding to that model, and then add features starting from the
first feature, computing one feature at a time, until the cost budget
is exhausted for the given item. Note that we may end up at a point
where we have evaluated more or less features than the feature set
we started off with, because the item need not be of the same size
as the item size used for offline indexing. Even if the size is dif-
ferent, since we have the entire sequence of expanded feature sets
recorded for each λ, we can, when the size is larger, add a subset of
features and still get to a feature set (and therefore a machine learn-
ing model) that is good, or when the size is smaller, add a superset
of features (and therefore a model) and get to an even better model.

Comparison: This algorithm has some advantages compared to
POLY-DOM:
• The number of models expanded is simply |L|×|F|2, unlike

POLY-DOM, whose number of expanded models could grow
exponentially in F in the worst case.
• Given the number of models stored is small (proportional to
|F| × |L|), the lookup can be simple and yet effective.
• The algorithm is any-time; for whatever reason if a feature

evaluation cost is not as predicted, it can still terminate early
with a good model, or terminate later with an even better
model.

GREEDY also has some disadvantages compared to POLY-DOM:
• It does not provide any guarantees of optimality.
• Often, GREEDY returns models that are worse than POLY-

DOM. Thus, in cases where accuracy is crucial, we need to
use POLY-DOM.
• The λ values we iterate over, i.e., L, requires hand-tuning,

and may not be easy to set. Our results are very sensitive to
this cost function.
• Since GREEDY uses a fixed size, for items that are of a very

different size, it may not perform so well.
We will study the advantages and disadvantages in our experiments.

Special Cases: We now describe two special cases of GREEDY
that merit attention: we will consider these algorithms in our ex-
periments as well.
• GREEDY-ACC: This algorithm is simply GREEDY whereL =
{−∞}; that is, this algorithm adds one at a time, the feature
with the smallest cost at the median size.
• GREEDY-COST: This algorithm is simply GREEDY where
L = {∞}; that is, this algorithm adds one at a time, the
feature that adds the most accuracy with no regard to cost.

Note that these two algorithms get rid of one of the disadvantages
of GREEDY, i.e., specifying a suitable L.

5. EXPERIMENTS
Online prediction depends on two separate phases—an offline

phase to precompute machine learning models and data structures,
and an online phase to make the most accurate prediction within
a time budget. To this end, the goals of our evaluation are three-
fold: First, we study how effectively the POLY-DOM and GREEDY-
based algorithms can prune the feature set lattice and thus reduce
the number of models that need to be trained and indexed during
offline pre-computation. Second, we study how these algorithms

affect the latency and accuracy of the models that are retrieved on-
line. Lastly, we verify the extent to which our anti-monotonicity
assumption holds in real-world datasets.

To this end, we first run extensive simulations to understand the
regimes when each algorithm performs well (Section 5.2). We then
evaluate how our algorithms perform on a real-world image classi-
fication task (Section 5.3), and empirically study anti-monotonicity
(Section B) and finally evaluate our algorithms on the real-wold
classification task.

5.1 Experimental Setup
Metrics: We study multiple metrics in our experiments:
• Offline Feature Set Expansion (Metric 1): Here, we measure

the number of feature sets “expanded” by our algorithms,
which represents the amount of training required by our al-
gorithm.
• Offline Index (Metric 2): Here, we measure the total size of

the index necessary to look up the appropriate machine learn-
ing model given a new item and budget constraints.
• Online Index lookup time (Metric 3): Here, we measure the

amount of time taken to consult the index.
• Online Accuracy (Metric 4): Here, we measure the accuracy

of the algorithm on classifying items from the test set.
In the offline case, the reason why we study these two metrics (1
and 2) separately is because in practice we may be bottlenecked in
some cases by the machine learning algorithm (i.e., the first met-
ric is more important), and in some cases by how many machine
learning models we can store on a parameter server (i.e., the sec-
ond metric is more important). The reason behind studying the two
metrics in the online case is similar.

Our Algorithms: We consider the following algorithms that we
have either developed or adapted from prior work against each
other:
• POLY-DOM: The optimal algorithm, which requires more

storage and precomputation.
• GREEDY: The algorithm adapted from Xu et al [45], which

requires less storage and precomputation than POLY-DOM,
but may expand a sub-optimal set of feature sets that result
in lower accuracy when the item sizes change.
• GREEDY-ACC: This algorithm involves a single sequence of

GREEDY (as opposed to multiple sequences) prioritizing for
the features contributing most to accuracy.
• GREEDY-COST: This algorithm involves a single sequence

of GREEDY prioritizing for the features that have least cost.

Comparison Points: We developed variations of our algorithms to
serve as baseline comparisons for the lattice exploration and index-
ing portions of an online prediction task:
• Lattice Exploration: NAIVE-EXPAND-ALL expands the com-

plete feature set lattice.
• Indexing: While POLY-DOM only indexes points where the

dominance relationship changes, POLY-DOM-INDEX-ALL in-
dexes every intersection point between all pairs of candidate
feature sets. Alternatively, NAIVE-LOOKUP does not create
an index and instead scans all candidate feature sets online.

5.2 Synthetic Prediction Experiments
Our synthetic experiments explore how feature extraction costs,

individual feature accuracies, interactions between feature accura-
cies, and item size variance affect our algorithms along each of our
four metrics.

Synthetic Prediction: Our first setup uses a synthetic dataset whose



item sizes vary between 1 and 500. To explore the impact of non-
constant feature extraction costs, we use a training set whose sizes
are all 1, and vary the item sizes in the test dataset. For the feature
sets, we vary four key parameters:
• Number of features fi: We vary the number of features in our

experiments from 1 to 15. The default value in our experi-
ments is 12.
• Feature extraction cost c(fi, n): We randomly assign the

cost function to ensure a high degree of intersection points.
Each function is a polynomial of the form c = a0 + a1n +
a2n

2 where the coefficients are picked as follows: a0 ∈
[0, 100], a1 ∈ [0, 100−a0

10
], a2 ∈ [0, 100−a0−a1

4
]. (The rea-

son why typically a0 < a1 < a2 is that a1 is multiplied
by n, while a2 is multiplied by n2.) We expect that typi-
cal cost functions are bounded by degree n2 and found that
this is consistent with the cost functions from the real-world
task. Note that POLY-DOM is insensitive to the exact cost
functions, only the intersection points.
• Single feature accuracy a({fi}): Each feature’s accuracy is

sampled to be either helpful with probability p or not helpful
with probability 1 − p. If a feature is helpful, then its accu-
racy is sampled uniformly from within [0.7, 0.8] and within
[0.5, 0.6] if it is not.
• Feature interactions a(Fi): We control how the accuracy of

a feature set Fi depends on the accuracy of its individual
features using a parameterized combiner function:

ak(Fi) = 1−Πfj∈Fk
i

(1− a(fj))

where F k
i are the top k most accurate features in Fi. Thus

when k = 1, Fi’s accuracy is equal to its most accurate sin-
gle feature. When k = ∞, Fi’s accuracy increases as more
features are added to the set. We will explore k = 1 and∞
as two extremes of this combiner function. We denote the
combiner function for a specific k value as cfk. Note that
for any k, the accuracy values are indeed monotone. We will
explore the ramifications of non-monotone functions in the
real-world experiments.

We use the following parameters to specify a specific synthetic
configuration: the number of features n, the parameter p, and k,
the amount the features interact with each other. In each run, we
use these parameters to generate the specific features, cost func-
tions and accuracies that are used for all of the algorithms. Un-
less specified, the default value of α is 1.2. For GREEDY, the
L = {0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.5, 1, 5, 10}.
Although we vary L over a large range, in practice the majority
give rise to identical sequences because the dominating set of fea-
ture sets is fixed for a given item size (as assumed by GREEDY).

Feature Set Expansions (Metric 1): We begin by comparing the
number of models that POLY-DOM, GREEDY and NAIVE-EXPAND-
ALL train as a function of the combiner function and the number
of features. This is simply the total number of unique feature For
POLY-DOM and NAIVE-EXPAND-ALL, the number of feature sets
is simply the number of nodes in the lattice that are expanded, while
for GREEDY this is simply the number of unique feature sets ex-
panded.

Metric 1 Summary: On the synthetic dataset, for cf1, the
number of feature sets (i.e., lattice nodes) expanded by POLY-
DOM’s lattice pruning phase for α = 1.2 is at least an order-
of-magnitude (10×) smaller than NAIVE-EXPAND-ALL, and
is similar to GREEDY.

While POLY-DOM with α = 1 expands similar to α = 1.2

for cf1, it expands all features for cf∞. This is not surprising
at all: cf∞ is designed to be a scenario where every interme-
diate feature set is “useful”, i.e., none of them get sandwiched
between other feature sets.

In Figure 6(a) and Figure 6(b), we depict the number of feature
sets expanded (in log scale) as a function of the number of features
in the dataset along the x axis, for cf1 and cf∞ respectively. p is
set to 0.6. The plots for other values are similar.

For both combiner functions, the total number of possible feature
sets (depicted as NAIVE-EXPAND-ALL) scales very rapidly, as ex-
pected. On the other hand, the number of feature sets expanded
by POLY-DOM for α = 1.2 grows at a much slower rate for both
graphs, because POLY-DOM’s pruning rules allow it to “sandwich”
a lot of potential feature sets and avoid expanding them. Consider
first combiner function (i.e., Figure 6(a)) For 10 features, NAIVE-
EXPAND-ALL expands around 1000 feature sets, while POLY-DOM
for α = 1 expands about 50, and α = 1.2 expands about 30. We
find that the ability to effectively prune the lattice of feature sets
depends quite a bit on the combiner function. While POLY-DOM
with α = 1.2 continues to perform similarly. POLY-DOM α = 1
expands as much as NAIVE-EXPAND-ALL; this is not surprising
given that all intermediate feature sets have accuracy values strictly
greater than their immediate children. In comparison, GREEDY ex-
pands about as many features as POLY-DOM with α = 1.2 but
with a slower growth rate as can be seen from both cf1 and cf∞;
this is not surprising because in the worst case GREEDY expands
|L| × |F|2.

Indexing Size and Retrieval (Metric 2 and 3): Here, we mea-
sure the indexing and retrieval time of the POLY-DOM algorithms,
which use a more complex indexing scheme than the GREEDY al-
gorithms.
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Figure 6: # of feature sets expanded vs # features for (a) cf1 (b) cf∞

Metric 2 and 3 Summary: On the synthetic dataset, espe-
cially for larger numbers of features, the size of the POLY-
DOM index is significantly smaller than the size of the POLY-
DOM-INDEX-ALL index, and almost as small as the NAIVE-
LOOKUP index. However, while NAIVE-LOOKUP has a
smaller index size, NAIVE-LOOKUP’s retrieval time is much
larger than POLY-DOM (for multiple values of α), making it
an unsuitable candidate.

In Figure 7(a) and Figure 7(b), we plot, for the two combiner func-
tions the total size of the poly-dom index as the number of fea-
tures is increased (for α = 1.2, p = 0.6.) Consider the case
when the number of features is 10 for cf1: here, POLY-DOM and
NAIVE-LOOKUP’s index size are both less than 200, POLY-DOM-
INDEX-ALL’s index size is at the 1000 mark, and rapidly increases
to 6000 for 12 features, making it an unsuitable candidate for large
numbers of features. The reason why POLY-DOM’s index size is
smaller than POLY-DOM-INDEX-ALL is because POLY-DOM only
indexes those points where the dominance relationship changes,



while POLY-DOM-INDEX-ALL indexes all intersection points be-
tween candidate feature sets. NAIVE-LOOKUP, on the other hand,
for both cf1 and cf∞ only needs to record the set of candidate sets,
and therefore grows slowly as well.

On the other hand, for retrieval time, depicted in Figures 8(a) and
8(b), we find that the POLY-DOM’s clever indexing scheme does
much better than NAIVE-LOOKUP, since we have organized the
feature sets in such a way that it is quick to retrieve the appropriate
feature set given a cost budget On the other hand, NAIVE-LOOKUP
does significantly worse than POLY-DOM, since it linearly scans
all candidate feature sets to pick the best one — especially as the
number of features increases.
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Real-Time Accuracy (Metric 4): We now test the accuracy of the
eventual model recommended by our algorithm.

Metric 4 Summary: On synthetic datasets, for cf1 and cf∞,
over a range of budgets, POLY-DOM (with both α = 1 or
1.3), returns models with greater accuracies than GREEDY and
GREEDY-ACC, which returns models with greater accuracies
than GREEDY-COST. Often the accuracy difference (for cer-
tain budgets) between POLY-DOM and GREEDY, or between
GREEDY and GREEDY-COST can be as high as 20%.

In figure 9(a) and 9(b), we plot the accuracy as a function of
budget for POLY-DOM with α = 1 and 1.2, and for GREEDY,
GREEDY-ACC and GREEDY-COST. For space constraints, we fix
the item size to 50 and use 12 features. α = 1 and 1.2 is almost al-
ways better than GREEDY. For instance, consider budget 1000 for
cf1 POLY-DOM with α = 1&1.2 has an accuracy of about 80%,

while GREEDY, GREEDY-ACC and GREEDY-COST all have an ac-
curacy of about 50%; as another example, consider budget 1000 for
cf∞, where POLY-DOM with α = 1&1.2 has an accuracy of more
than 90%, while GREEDY, GREEDY-ACC and GREEDY-COST all
have accuracies of about 50%. In this particular case, this may be
because GREEDY, GREEDY-ACC, and GREEDY-COST all explore
small portions of the lattice and may get stuck in local optima. That
said, apart from “glitches” in the mid-tier budget range, all algo-
rithms achieve optimality for the large budgets, and are no better
than random for the low budgets.

Further, as can be seen in the figure GREEDY does better than
GREEDY-COST, and similar to GREEDY-ACC. We have in fact also
seen other instances where GREEDY does better than GREEDY-
ACC, and similar to GREEDY-COST. Often, the performance of
GREEDY is similar to one of GREEDY-ACC or GREEDY-COST.
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5.3 Real Dataset Experiments
Real Dataset: This subsection describes our experiments using a
real image classification dataset [21]. The experiment is a multi-
classification task to identify each image as one out of 15 possible
scenes. There are 4485 labeled 250× 250 pixel images in the orig-
inal dataset. To test the how our algorithms perform on varying
image sizes, we rescale them to 65×65, 125×125 and 187×187
pixel sizes. Thus in total, our dataset contains 17900 images. We
use 8000 images as training and the rest as test images.

The task uses 13 image classification features (e.g., SIFT and
GIST features) that vary significantly in cost and accuracy. In Fig-
ure 10(a), we plot the cost functions of eight representative features
as a function of n, the item size, that we have learned using least
squares curve fitting to the median cost at each training image size.
As can be seen in the figure, there are some features whose cost
functions are relatively flat (e.g., gist), while there are others that
are increasing linearly (e.g., geo_map8×8) and super-linearly (e.g.,
texton).

However, note that due to variance in feature evaluation time,
we may have cases where the real evaluation cost does not exactly
match the predicted or expected cost. In Figure 10(a), we depict the
10% and 90% percentile of the cost given the item size for a single
feature. As can be seen in the figure, there is significant variance
— especially on larger image sizes.

To compensate for this variation, we compute the cost functions
using the worst-case extraction costs rather than the median. In
this way, we ensure that the predicted models in the experiment are
always within budget. Note that GREEDY does not need to do this
since it can seamlessly scale up/down the number of features evalu-
ated as it traverses the sequence corresponding to a given λ. We did
not consider this dynamic approach for the POLY-DOM algorithm.

The “black box” machine learning algorithm we use is a Linear
classifier using stochastic gradient descent learning with hinge loss
and L1 penalty. We first train the model over the training images
for all possible combinations of features and cache the resulting
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models and cross-validation (i.e., estimated) accuracies. The rest
of the experiments can look up the cached models rather than re-
train the models for each execution.

For this dataset, our default values for α, e are 1.2, 0, respec-
tively As we will see in the following, the impact of e is small,
even though our experiments described appendix B find that e ≥ 0.

Feature Set Expansions (Metric 1):
Metric 1 Summary: On the real dataset, the number of fea-
ture sets expanded by POLY-DOM’s offline lattice pruning
phase for α = 1.2 is 20× smaller than NAIVE-EXPAND-ALL,
with the order of magnitude increasing as α increases, and as e
decreases. GREEDY expands a similar number of feature sets
as POLY-DOM with α = 1.2.
In Figure 11(a), we depict the number of feature sets expanded

(in log scale) as a function of the tolerance to non-monotonicity e
along the x axis, for POLY-DOM with values of α = 1.1, . . . , 1.5,
and for GREEDY.

As can be seen in the figure, while the the total number of pos-
sible feature sets is close to 8200 (which is what NAIVE-EXPAND-
ALL would expand), the number of feature sets by POLY-DOM is
always less than 400 for α = 1.2 or greater, and is even smaller for
larger αs (the more relaxed variant induces fewer feature set expan-
sions). GREEDY (depicted as a flat black line) expands a similar
number of feature sets as POLY-DOM with α = 1.2. On the other
hand, for α = 1.1, more than 1/4th of the feature sets are expanded.

The number of feature sets expanded also increases as e increases
(assuming violations of monotonicity are more frequent leads to
more feature set expansions).
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Indexing Size and Retrieval (Metric 2 and 3):
Metric 2 and 3 Summary: On the real dataset the size of the
index for POLY-DOM is two orders of magnitude smaller than
POLY-DOM-INDEX-ALL, while NAIVE-LOOKUP is one order
of magnitude smaller than that. The index size increases as e
increases and decreases as α increases. However, the retrieval
time for POLY-DOM is minuscule compared to the retrieval
time for NAIVE-LOOKUP.
In Figure 11(b), we plot the total index size as the tolerance to

non-monotonicity is increased (for α = 1.3.) As can be seen in

the figure, the index size for POLY-DOM grows slowly as com-
pared to POLY-DOM-INDEX-ALL, while NAIVE-LOOKUP grows
even slower. Then, in Figure 11(c), we display the total index size
that decreases rapidly as α is increased.

On the other hand, if we look at retrieval time, depicted in Fig-
ures 12(a) and 12(b) (on varying e and on varying α respectively),
we find that NAIVE-LOOKUP is much worse than POLY-DOM—
POLY-DOM’s indexes lead to near-zero retrieval times, while NAIVE-
LOOKUP’s retrieval time is significant, at least an order of magni-
tude larger. Overall, we find that as the number of candidate sets
under consideration grows (i.e., as α decreases, or e increases),
we find that POLY-DOM does much better relative to POLY-DOM-
INDEX-ALL in terms of space considerations, and does much better
relative to NAIVE-LOOKUP in terms of time considerations. This
is not surprising: the clever indexing scheme used by POLY-DOM
pays richer dividends when the number of candidate sets is large.
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Real-Time Accuracy (Metric 4):
Metric 4 Summary: On the real dataset, we find that while
POLY-DOM still performs well compared to other algorithms
for small α, some GREEDY-based algorithms are competitive,
and in a few cases, somewhat surprisingly, better than POLY-
DOM. All other things being fixed, the accuracy increases as
the item size decreases, the budget increases, the α decreases,
and e increases.

In Figure 13(a), we plot the average estimated accuracy of the
model retrieved given a budget for various values of α and e for
POLY-DOM, GREEDY, GREEDY-ACC, and GREEDY-COST across
a range of image sizes. As can be seen in the figure, POLY-DOM
dominates GREEDY and GREEDY-ACC apart from the case when
α = 1.1. Even for α = 1.1, POLY-DOM dominates GREEDY-
ACC when e = 0.05: here, we see that a higher e leads to better
performance, which we did not see in other cases.



Perhaps the most surprising aspect of this dataset is that GREEDY-
COST dominates all the others overall. While the reader may be
surprised that a GREEDY-based algorithm can outperform POLY-
DOM with α = 1, recall that the GREEDY algorithms are any-time
algorithms that can adapt to high variance in the feature evaluation
cost, as opposed to POLY-DOM, which provisions for the worst-
case and does not adapt to the variance. In future work, we plan
to explore any-time variants of POLY-DOM, or hybrid variants of
POLY-DOM with GREEDY-based algorithms.

In Figure 11(d), we plot the estimated accuracy of the model re-
trieved as a function of the budget for various image sizes (across
a number of images of the same size). As can be seen in the fig-
ure, the estimated accuracy is higher for the same size of image,
as budget increases. Also, the estimated accuracy is higher for the
same budget, as image size decreases (as the image size decreases,
the same budget allows us to evaluate more features and use a more
powerful model.)

6. RELATED WORK
Despite its importance in applications, cost-sensitive real-time

classification is not a particularly well-studied problem: typically,
a feature selection algorithm [32] is used to identify a set of inex-
pensive features that are used with an inexpensive machine learning
model (applied to all items, large or small), and there are no dy-
namic decisions enabling us to use a more expensive set of features
if the input parameters allow it. This approach ends up giving us
a classifier that is sub-optimal given the problem parameters. This
approach has been used for real-time classification in a variety of
scenarios, including: sensor-network processing [28, 8], object and
people tracking [22, 36, 17], understanding gestures [29, 35], face
recognition, speech understanding [3, 9], sound understanding [33,
39] scientific studies [16, 23], and medical analysis [31, 20]. All of
these applications could benefit from the algorithms and indexing
structures outlined in this paper.

Our techniques are designed using a wrapper-based approach [19]
that is agnostic to the specific machine learning model, budget met-
ric, and features to extract. For this reason, our approach can be
applied in conjunction with a variety of machine learning classi-
fication or regression techniques, including SVMs [15], decision
trees [27], linear or ridge regression [14], among others [12]. In
addition, the budget can be defined in terms of systems resources,
monetary metrics, time or a combination thereof.

There has been some work on adapting traditional algorithms to
incorporate some notion of joint optimization with resource con-
straints, often motivated by a transition of these algorithms out of
the research space and into industry. A few examples of this ap-
proach have been developed by the information retrieval and doc-
ument ranking communities. In these papers the setup is typically
described as an additive cascade of classifiers intermingled with
pruning decisions. Wang et al notes that if these classifiers are inde-
pendent the constrained selection problem is essentially the knap-
sack problem. In practice, members of an ensemble do not inde-
pendently contribute to ensemble performance, posing a potentially
exponential selection problem. For the ranking domain, Wang et
al apply an algorithm that attempts to identify and remove redun-
dant features [42], assemble a cascade of ranking and pruning func-
tions [41], and develop a set of metrics to describe the efficienty-
effectiveness tradeoff for these functions [40]. Other work focuses
specifically on input-sensitive pruning aggresiveness [38] and early
cascade termination strategies [6]. These approaches are similar in
spirit to ours but tightly coupled to the IR domain. For example, re-
dundant feature removal relies on knowledge of shared information
between features (e.g., unigrams and bigrams), and the structure of

the cascade (cycles of pruning and ranking) is particular to this par-
ticular problem. Further, these approaches are tuned to the ranking
application, and do not directly apply to classification.

Xu’s classifier cascade work [7, 44, 43, 45] considers the prob-
lem of post-processing classifiers for cost sensitivity. Their ap-
proach results in similar benefits to our own (e.g., expensive fea-
tures may be chosen first if the gains outweigh a combination of
cheap features), but it is tailored to binary classification environ-
ments with low positive classification rate and does not dynami-
cally factor in runtime input size. Others apply markov decision
processes to navigate the exponential space of feature combina-
tions [18], terminate feature computation once a test point sur-
passes a certain similarity to training points [24], or greedily order
feature computation [25], but none of these formalize the notion
of budget or input size into the runtime model, making it difficult
to know whether high-cost high-reward features can be justified up
front or if they should be forgone for an ensemble of lower-cost
features. That said, our GREEDY algorithm (along with its vari-
ants, GREEDY-ACC and GREEDY-COST) are adapted from these
prior papers [45, 25].

Our POLY-DOM algorithms are also related to prior work on the
broad literature on frequent itemset mining [2], specifically [5, 26],
that has a notion of a lattice of sets of items (or market baskets)
that is explored incrementally. Further, portions of the lattice that
are dominated are simply not explored. Our POLY-DOM algorithm
is also related to skyline computation [37], since we are implic-
itly maintaining a skyline at all “interesting” item sizes where the
skyline changes drastically.

Anytime algorithms are a concept from planning literature that
describe algorithms which always produce some answer and con-
tinuously refine that answer give more time [10]. Our GREEDY-
family of algorithms are certainly anytime algorithms.

7. CONCLUSION AND FUTURE WORK
In this paper, we designed machine-learning model-agnostic cost-

sensitive prediction schemes. We developed two core approaches
(coupled with indexing techniques), titled POLY-DOM and GREEDY,
representing two extremes in terms of how this cost-sensitive pre-
diction wrapper can be architected. We found that POLY-DOM’s
optimization schemes allow us to maintain optimality guarantees
while ensuring significant performance gains on various param-
eters relative to POLY-DOM-INDEX-ALL, NAIVE-LOOKUP, and
NAIVE-EXPAND-ALL, and many times GREEDY, GREEDY-ACC,
and GREEDY-COST as well. We found that GREEDY, along with
the GREEDY-ACC and GREEDY-COST variants enable “quick and
dirty” solutions that are often close to optimal in many settings.

In our work, we’ve taken a purely black-box approach towards
how features are extracted, the machine learning algorithms, and
the structure of the datasets. In future work, we plan to investigate
how knowledge about the model, or correlations between features
can help us avoid expanding even more nodes in the lattice.

Furthermore, in this paper, we simply used the size of the image
as a signal to indicate how long a feature would take to get evalu-
ated: we found that this often leads to estimates with high variance
(see Figure 10(b)), due to which we had to provision for the worst-
case instead of the average case. We plan to investigate the use
of other “cheap” indicators of an item (like the size) that allow us
to infer how much a feature evaluation would cost. Additionally,
in this paper, our focus was on classifying a single point. If our
goal was to evaluate an entire dataset within a time budget, to find
the item with the highest likelihood of being in a special class, we
would need very different techniques.
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APPENDIX
A. PROOF OF THEOREM 3.13

The following a proof of the poly-dom index construction algo-
rithm described in Section 3.2.
PROOF The proof follows a case analysis:
• Scenario 1: Curve 1 and 2 both on skyline and α1 > α2

• Scenario 2: Curve 1 is not on the skyline while Curve 2 is
• Scenario 3: Curve 1 and 2 are both not on skyline
• Scenario 4: Curve 1 is on the skyline and Curve 2 is not, and
α1 > α2

The argument is that for Scenario 3 and 4, the skyline will not
change: in scenario 3, Curve 1 and 2 will still not be on the skyline,
while in Scenario 4, since Curve 1 gets even better, it will still be
on the skyline, while Curve 2 will be dominated by Curve 1 and
therefore will not be on the skyline.

On the other hand, for Scenario 1, Curve 1 will start dominating
Curve 2, and so Curve 2 now is removed from the skyline. For
Scenario 2, which is a little tricky, Curve 1, which is not on the
skyline because of high cost, may move into the skyline if there
is no other curve that dominates it (i.e., has lower cost and higher
accuracy).

The other scenarios cannot happen:
• Other half of Scenario 1: Curve 1 and 2 are both on skyline,

and α1 < α2 cannot happen, because then Curve 2 would
dominate Curve 1
• Other half of Scenario 4: Curve 1 is on the skyline while

Curve 2 is not on the skyline and α1 < α2 cannot happen
since Curve 1 is dominated by Curve 2 �

B. ASSUMPTION VALIDATION
In addition to the above performance metrics, we evaluated the

sources of three types of variation that deviate from our assump-
tions.
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Figure 14: (a) CDF of anti-monotonicity (b) anti-monotonicity as a function of dis-
tance (c) Cost vs. Estimated Cost (d) Accuracy vs. Estimated Accuracy

Anti-monotonicity: First, we focus on the monotonicity assump-
tion that we made on the real dataset, which we used to define
the e values used in the experiments. Although the monotonicity



principle is anecdotally known to be true among machine learning
practitioners, we were unable to find a reference for the practical
evaluation of monotonicity on a real dataset. We view this as an
additional contribution of our paper.

Figure 14(a) plots the cumulative distribution of the violations of
monotonicity between pairs of ancestor-descendant feature sets in
the lattice. Most of the violations are small: close to 95% of the
violations are below an error of 5%, while all violations are within
7.5%. Thus, we believe the monotonicity principle is largely true,
even on a real dataset. Note that we found fimor devations between
the quality of the retrieved models as we decreased e to 0, so the
assumptions that we made in the paper do not hurt us in a significant
way.

Next, we would like to evaluate where in fact these violations of
monotonicity exist in the lattice. Figure 14(b) evaluates the distri-
bution of violations as a function of distance4 between feature set
pairs. The black line is the median e (with grey error bars) of all
violations as a function of distance. As can be seen in the figure,
the highest median e as well as the largest variance is at distance 2
and both quickly decrease to close to 0 at 8. This is a good sign:
violations of monotonicity, if any, are local rather than global, with
almost no violations that are between pairs of feature sets that are
far away from each other. These results suggest that the Skyline
algorithm is not likely to falsely prune a feature set early on due
to a violation in monotonicity. Furthermore, a modest e value can
compensate for the majority of violations.

Estimated Versus Actual: Next, we compare the estimated cost
and accuracies of the real-world model with the true values for large
and small image sizes.

Figure 14(c) plots the estimated versusactual cost. We find that
the cost function tends to over estimate the actual cost because the
cost functions are trained on the worst, rather than average case.
We chose this because if we did provision for the mean cost, the
poly-dom index may return models whose true costs exceed the
time budget. The costs for GREEDY are similar, however because
it ignores item size during the offline phase, it severely underesti-
mates the cost of the small images, in contrast to POLY-DOM.

Figure 14(d) plots the estimated and true accuracy of the mod-
els retrieved. We find the the estimated accuracy is indeed linearly
correlated with the true accuracy. However the model consistently
overestimates the accuracy because the small images are downsam-
pled, so the features are correspondingly less accurate. Overall, this
suggests that optimizing for estimated accuracy is a reliable proxy
for the quality of predictions at test time.

C. ALGORITHM PSEUDOCODE

Algorithm 1: CANDIDATE-SET-CONSTRUCTION

Data: F , n0, α
Result: candidateSet
expandedNodes = EXPAND-ENUMERATE (F , n0, α);
toRemove = ∅;
for s, r ∈ expandedNodes do

if s is dominated by r then
add s to toRemove;

candidateSet = expandedNodes− toRemove;

4the difference in number of features between the ancestor and de-
scendant featuresets

Algorithm 2: EXPAND-ENUMERATE

Data: F , n0, α
Result: expandedNodes
activeTop = {F};
activeBottom = {{}};
frontierTop = frontierBottom = expandedNodes = ∅;
while activeTop or activeBottom is non-empty do

activeTop2 = activeBottom2 = ∅;
for s in activeTop do

if s is not sandwiched between frontierTop,
frontierBottom AND has not been expanded then

expand s and add to expandedNodes;
add s’s children to activeTop2;
add s to frontierTop;
remove s’s parents from frontierTop;

remove s from activeTop;

for s in activeBottom do
if s is not sandwiched between frontierTop,
frontierBottom AND has not been expanded then

expand s and add to expandedNodes;
add s’s parents to activeBottom2;
add s to frontierBottom;
remove s’s children from frontierBottom;

remove s from activeBottom;

activeTop = activeTop2;
activeBottom = activeBottom2;

Algorithm 3: POLYDOMINTERSECTIONS

Data: C, α
Result: Poly − Dom
candCurves = curves corresponding to C;
sortedCurves = sorted candCurves for n < 1 on cost;
intPoints = p.queue of int. pts. of neighboring curves;
while IntPoints is not empty do

singlePt = intPoints.pop();
update sortedCurves for singlePt;
a, b = curves that intersect at singlePt;
if interesting(singlePt, sortedCurves) then

ptsSoFar.add(singlePt);
intPoints.add(new intersections of a, b with neighbors in
sortedCurves);

return ptsSoFar;

Algorithm 4: GREEDY CANDIDATE-SEQUENCES

Data: F , n0

Result: candidateSeq
for λ ∈ L do

curSet = ∅;
remSet = F ;
while remSet 6= ∅ do

add best feature f ∈ remSet to curSet;
candidateSeq(λ).append(model corresponding to
curSet);
remove f from remSet;

return candidateSeq;
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