
Automated Metadata Construction To Support Portable
Building Applications

Arka Bhattacharya, David Culler
Electrical Engineering and Computer Sciences, UC Berkeley

arka,culler@eecs.berkeley.edu

Dezhi Hong, Kamin
Whitehouse

University of Virginia
dh5gm,whitehouse@virginia.edu

Jorge Ortiz
IBM Research

jjortiz@us.ibm.com

Eugene Wu
Computer Science, Columbia

University
ewu@cs.columbia.edu

ABSTRACT
Commercial buildings consume nearly 19% of delivered en-
ergy, nearly half (42%) of which is consumed in buildings
with digital control systems [21] comprised of wired sensor
networks. These sensors have scant metadata, and are repre-
sented by “tags” which are obscure, building-specific and not
machine parseable. We develop a human-in-the-loop synthe-
sis technique which uses syntactic and data-driven steps to
parse these sensor tags into a common namespace, which
can enable portable building applications. We show that
our technique allows an expert to fully parse a large frac-
tion ( 70%) of the tags with 15, 24 and 43 examples for
three large commercial buildings, and deploy three portable
applications on two buildings with less than 30 examples.

1. INTRODUCTION
While advances in cyberphysical systems have provided

new infrastructures for monitoring and interacting with phys-
ical environments, traditional automation and control in-
frastructures dominate the building stock and must also
advance. The monitoring and actuation networks that are
wired into commercial buildings, industrial plants, and ur-
ban infrastructures for their basic operation are increasingly
accessible through the BMS (Building Management System)
or SCADA (Supervisory Control and Data Acquisition) sys-
tems that host higher level control, retain historical data,
and provide visualization. Many of these systems provide
some kind of programmatic interface to the sensors, actua-
tors, and historical data under their management [2, 6, 22].
But, whether provided by novel networks or legacy instru-
mentation, extracting meaningful information from sensor
data and taking actions based on that data depends funda-
mentally on the metadata available to interpret it. While
development of effective metadata schema has become an
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active topic for emerging systems, it has long been a core
challenge in the legacy setting. Often, a critical step in the
deployment and engineering of large automation or build-
ing systems is formulating consistent naming conventions so
that the many aspects of a “point” — its function, type,
position, role, and so on — are represented in its “tag”, 1

typically a highly constrained alphanumeric string (cf, ([8,
4]). These encodings are often quite sophisticated , as they
have to convey many distinct attributes and relationships,
i.e., metadata, in a compact representation that is inter-
preted by various engineers over many years.
However, this terse metadata is designed to be used by

specially trained engineers in the field; it is not designed for
machine translation. Typically, tags are attached to vari-
ous screens as part of the human-machine interface of BMS
and SCADA systems, so engineers can check status and
plot trends. With knowledge of the intention of the naming
scheme and the ad hoc association to various views, the syn-
tax and semantics of the tag are aparent to the well-trained
engineer or facilities manager. But, developing an algorithm
to parse the tag and soundly identify each of the semantic
attributes in it is an altogether different story. There may
be no field delimiters or multiple, spurious ones; symbol
definition may be context dependent; different schemas may
encode the same type of sensor; and each vendor or each
deployment may follow different rules.
Thus, even with programmatic access to tags, data, and

other descriptive information, scaling analytics or intelligent
control across the commercial building stock to, say, improve
energy efficiency is likely to be intractable, as long as the
basic steps in interpreting the metadata involve labor in-
tensive manual efforts by highly trained professionals with
deep knowledge of each building. Sophisticated applications
may be developed for a particular building, but require cus-
tomized building-specific logic and queries, which are not
portable or scalable across buildings.
There have been extensive efforts to standardize and auto-

mate of the management of sensor metadata in SCADA and
1An example of such a tag would be BLA1R465__ART which
denotes the sensor point is in site BLD, is part of the air
handling unit (ahuRef) 1, located in room(zoneRef) 465, and
is a zone air temp sensor (denoted by ART). We term the
labels site, ahuRef, zoneRef, zone air temp sensor as fields,
and the corresponding substrings ( BLD, 1, 465, ART ) as their
field-values.



related systems. However, tag naming remains heterogenous
and inconsistent between agents [23]. Some tools [24] have
been created to automate the generation of tag namings,
but are largely oriented to making the tags more “human
readable” for later manipulation rather than making them
interpretable by computer for direct analysis.
In this paper we develop an automated synthesis tech-

nique that learns how to transform and normalize legacy
tags into a well-formed representation (cf., [1]) using a small
number of examples from an expert, e.g., the building man-
ager. Such building managers understand the tags, but
they are unlikely to be adept at writing complex regular ex-
pression programs to transform them to a common, under-
standable namespace. The transformation to such a names-
pace yields semantic relationships between sensors, which
enables analytics applications to be deployed without a pri-
ori building-specific knowledge.
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Figure 1: High-level view of major steps in our Algorithm

We draw inspriation from programing-by-example tech-
niques developed in [11]. To our knowledge, this paper is
the first attempt to apply these techniques to buildings, and
find that the techniques must be fundamentally rethought
to work well in building systems. Our approach is shown
in Figure 1. To reduce the complexity of parsing the var-
ied and inconsistent schemas contained within a building,
we first cluster the sensor metadata into chunks which are
more likely to share a common schema. An example is se-
lected from one of the clusters and provided to an expert
to parse into a common namespace. (In practice, a simple
GUI is provided for this.) Based on the example parse, we
synthesize rules from a domain-specific language which are
consistent with the expert-provided example. We then ap-
ply these rules to parse the field encodings of the remaining
sensor tags in that cluster, i.e., to generalize the example
to a program that can parse many of the tags. Based on
the resultant parsing, a new example is selected to be pre-
sented to the expert, and so on. Ideally, a few iterations
of this example-driven synthesis loop should produce rules
that correctly parse a large fraction of the tags. In practice,
this is the case, but several important factors and subtleties
arise, which we study in the sequel.
Once progress has been made in qualifying tags through

these syntactic methods, if we have access to the data streams
for the points associated with the tags, we can employ learn-

ing on the data to attempt to find points that are seman-
tically related, but with syntactically distinct tags. This
’boosting’ is represented by the second loop in the figure.
In either loop, an important question is how to select the
next example to present to the expert, since the human in
the loop is the precious resource. And, a critical question is
when to stop. Typically, most of the tags in a building con-
form to a few simple encoding formats, but many indiosyn-
cratic formats are present with few tags each. With proper
clustering, selection, rule synthesis and generalization the
vast majority of tags are resolved with a few examples, but
a long tail of obscure ones remains. One the other hand, the
real goal of this process is to enable portable applications
on buildings and any such application only requires certain
types of points. Thus, we also study how many examples are
needed to resolve all the points that are relevant to certain
important applications.
The three large commercial buildings used in our study

have 1586, 2522 and 1865 sensors respectively and come
from completely different institutions with different build-
ing systems, installers, and BMS vendors. We find that,
indeed, a few examples are sufficient to produce rules to
parse a large fraction of the tags in each. Our technique is
able to normalize the metadata of 70% of all sensors in just
24, 15 and 43 examples for the three buildings. The syn-
thesis technique is robust enough to handle the presence of
obscure and noisily encoded sensor metadata. However, use
of the pre-clustering is essential in some buildings to avoid
over-generalization of the synthesized rules. We study the
criteria used to select the next example to present to the
expert and find that random selection generally performs
better than application-specific heuristics, and choosing a
random example from the cluster with the largest number
of yet-unqualified tags is robust.
The long tail of obscure tag formats slows convergence;

to parse the entire set of tags requires in 161, 116 and 196
examples respectively. However, the applications of inter-
est generally do not require normalizing the metadata of all
sensors in a building, but only specific sensor types. That is
not to say they are uniformly encoded throughout — in one
of our buildings, the zone temperature sensors were encoded
six different ways.
The Data-Driven Example Selection builds a random for-

est classifier for the set of sensors required for an application
from the set of sensors already normalized, and applies it to
the remaining sensors in the building to identify similar sen-
sors that have not yet been presented. This classifier is built
using a feature vector computed from the physical data asso-
ciated with the sensors. For three applications on the two of
our buildings with accessible data streams the required sen-
sors are parsed with an order of magnitude fewer examples
than with only syntactic recommendations.
The techniques developed here are likely to be applicable

to the other large legacy sensor networks, such as indus-
trial processing, or urban monitoring, and provide a meta-
data framework that can be adopted without need for such
learning-based transformations in emerging sensor networks.
Section 2 provides a more concrete background of the

metadata problem, and describes the challenges. We then
describe our program synthesis technique and example selec-
tion techniques in Section 3. We then evaluate our synthesis
technique on three large commerical buildings, and run three



efficiency applications on them in Section 4. We conclude in
Section 5.

2. MOTIVATION AND BACKGROUND
In this section we show the nature of this problem, the

shortcomings of existing approaches, and the challenges in-
volved in synthesizing regular expression programs from expert-
provided examples.

2.1 Background
Commercial buildings consume nearly 19% of delivered

energy in the US, nearly half (42%) of which is consumed
in buildings with digital control systems [21]. Typically the
vendor (e.g JCI, Siemens) contracted to set up the digital
control systems of a particular building uses company and
deployment-specific guidelines to ”tag” sensor points. Often,
the only metadata accompanying a sensor stream is its tag
([8]); wherein the vendor and the facilities manager try to en-
code all the pertinent information for a particular sensor. In
our testbed a sensor SCADA tag BLDA1R465__ART encodes
the following information: BLD denotes the site name, A1 in-
dicates it is part of the first air handling unit, R465 indicates
it is located in room 465, and ART indicates it is an air tem-
perature sensor. Another sensor labelled BLDA1R465__ARS
indicates that it is in the same room 465 (R465), part of the
first air handling unit (A1) but is a room temperature set-
point (ARS). Note, these tags encode the location of the sen-
sors and the semantic relationship between them and other
sub-systems in the building. These encodings typically vary
between buildings (often, even those deployed by same the
vendor) — for instance, in another building in our data set,
a tag looks like this: BLD.S2-06:CTL STPT:PRIORITY with
2-06 indicating it the sensor was part of the 6th variable air
volume unit on the second floor (S2), and CTL STPT:PRIORITY
means that it is a air temperature setpoint.
Such custom, condensed encodings are widespread. We

surveyed several different BMS vendors and found many
variants of such encodings and no other available metadata
for the sensors. This makes it hard to infer a sensor’s context
uniformly across buildings and precludes the development of
applications that can scale across buildings.

2.2 Related Work
There have been various data-driven efforts to capture

the contextual and semantic relationships between sensors
in order to build applications, such as type classification of
sensors [17] and finding spatial relationships between sen-
sors ( [9, 13, 15]). However, these techniques either classify
sensors into broad categories (type classification), and do
not capture semantic (or functional) relations between sen-
sors (e.g which air temperature sensor is related to which
setpoint sensor), and hence are not useful in writing appli-
cations which depend on the semantic relationships between
sensors. Even if techniques like [9, 13, 15] can predict that
an air flow sensor and a temperature sensor are in the same
room, it cannot determine the air handling system the room
is a part of — information often encoded in the sensor meta-
data tag directly.
There has also been a prior work in substring extrac-

tion[11], and log record manipulation[14] using examples
from a human. However, spreadsheet and log data comprise
records encoded in very few schemas or formats, requiring
only two or three human examples to synthesize programs

to extract all the required fields. These techniques fail to
parse building sensor metadata, which present a far more
heterogenous and noisy dataset, containing many different
schemas and hundreds of encoded fields (comparison shown
in Figure 3). We achieve the required robustness using
a combination of clustering, domain-specific language con-
tructs. We draw from the boolean classification techniques
in [11] to avoid over-generalization of synthesized rules. In
the building domain, industrial softwares like PI from OS-
Isoft [18] give users the ability to generate wildcard regular
expressions to select a set of tags. Our domain-specific lan-
guage provides for much more powerful regular expressions
than such software. [20, 19] use string matching to find
the most likely fields in building tags. This approach breaks
down when fields are represented by only one or two alpha-
bets as in the buildings in our dataset.
Currently, there is no consensus schema in the sensor net-

work, or BMS vendor community about a particular schema.
Some schemas such as Green Building XML [10], and Indus-
try Foundation Classes [5] require a very high level of de-
tail for every metadata tag, making it unsuitable for use in
our context where that level of detail might not be avail-
able. There have been recent efforts such as sMAP [6],
HomeOS [7] and Building Depot [22] to systematically de-
scribe sensors and their functionality in a building. However,
these systems ignore the problem of mapping the thousands
of existing underlying sensors to their desired sensor descrip-
tion templates. We chose the markers/idioms specified in
the Project Haystack ( [1]) convention as our target names-
pace.

2.3 Challenges
Our technique automatically synthesizes regular expres-

sion programs that transform primitive SCADA metadata
into a common desired namespace. Learning from expert-
provided examples has two advantages over manually gen-
erating regular expression programs — (a) the experts, of-
ten facility managers or maintenance professionals, are not
well-equipped to construct the correct regular expression
programs themselves; (b) inconsistencies in the metadata
structure, obscure and noisy encodings, require hundreds of
very complex regular expressions, which would make manual
regex generation error-prone, if not impossible.
Unlike machine opcodes, the language of the primitive

metadata was not created with the intention of being ma-
chine decode-able. Machine opcodes generally have specific
fields which specify how to parse a particular sequence of
characters/bits (fixed field encodings) which make design-
ing a language for parsing tractable. On the other hand,
primitive sensor metadata may suffer from the following in-
consistencies which make parsing hard2 :

• Context-dependence: Different fields may be coalesced
in a context-dependent way. For instance, the sixth
letter — C — in
BLDA1C600A_ART may refer to the field room, while in
BLDC1C2____TMR it refers to the field chiller.

• Multiple Schemas: Tags within a particular building
may comprise several different schemas. For instance,
a sensor with the metadata
BLDA1C600A_ART should be parsed as

2we illustrate examples from one building in our dataset.
These challenges appear in all the three buildings in our
dataset



BLD A 1 C 600A_ ART , each token represent-
ing the value of a different field. In the same building,
there exists sensors with metadata such as
BLDS03AR179ART, which is tokenized as
BLD S 03A R 179 ART .

• Variable Delimiters: The metadata schema also does
not depend on specific delimiters. As shown in the ex-
ample
BLD A 1 C 600A_ ART , letters themselves can
be the delimiters for some tokens, and underscore char-
acters for others.

• Spurious Delimiters : Some tokens may have delim-
iters as a part of the token. For instance, in the same
dataset a sensor with the metadata
BLDA2S14SASA_M, for example, should be parsed as
BLD A 2 S 14 SASA_M .

• Multiple values for the same field: some fields may be
expressed by multiple different values. For instance,
the field room may be denoted by an R or a C, while the
field damper valve position maybe expressed as either
VAV or VP.

• Noisy data: The metadata of some sensors may have
misplaced or wrong tokens borne out of human error.

3. AUTOMATED METADATA CONSTRUC-
TION TECHNIQUES

We now describe the techniques used to perform each of
the four main components of our system , i.e apriori Syntac-
tic Clustering (3.1), Rule Synthesis and Application (3.2),
selecting an example for the expert using only the sensors’
metadata syntax (3.3) or through data (3.4).

3.1 Syntactic Clustering
Given a building’s sensor tags, we perform syntactic clus-

tering on them. This preconditioning step has three advan-
tages — (a) tags in a resulting cluster are more regular, and
hence helps our rule synthesis algorithm converge , (b) the
cluster with the most number of unqualified tags is a good
metric to decide which example to next select for an ex-
pert’s parse , (c) the rule synthesis and application happens
on a much smaller set of tags, and is,thus, computationally
faster.
In constructing the feature vector, we aim to cluster meta-

data strings which resemble fixed field encodings together.
Unlike clustering text documents, we have no apriori notion
of delimiters or words. We assume all non-alphanumeric
character to be a potential delimiter. We replace contigu-
ous runs of alphabets, numerals and special characters with
a single number — alphabets are denoted by 1 , numerals by
2 and each special character as an independent but consis-
tent number. Thus, the tag BLDA1R465__ART is denoted in
our feature space as 121231, and BLDS03AR179ART as 121213.
Intuitively, points which are close together in this space have
the same relative positioning of alphanumeric characters,
and thus can be parsed by a similar synthesized program.
The feature vector corresponding to a particular sensor is
then padded with 0s to make them have the same number
of dimensions.

3since BLDA is a continuous run of alphabets, it is replaced
by a single 1

We perform agglomerative clustering based on the jaccard
distance between the feature vectors as the distance metric4.
We define the hetereogeneity metric within a cluster to be
the average of all-pair jaccard distances, and at each step
merge two clusters if the heterogeneity of the resultant clus-
ter is below a specified threshold5. Clusters thus formed
are more regular (since they have similar positioning of al-
phabets, numerals and delimiters). Tags with idiosyncratic
schema form their own clusters.

3.2 Rule Synthesis and Rule Application
Our synthesis technique selects a sensor tag and presents

the example to an expert for a parse. We first introduce ter-
minology that we will use throughout this section, followed
by an overview and a description of the synthesis technique.
Terminology: The expert is expected to point out (Field,

Value, Value Type) tuples in the sensor tag. A field is
mapped on to a substring, which is called its value. A field
can have a constant or a variable value. A value is a con-
stant if it is not specific to that particular tag, and variable
otherwise.
Sample Input: Suppose the expert is presented with an ex-

ample BLDA1R465__ART. Suppose this sensor name indicates
that it is in Building BLD, is part of the first air handling
unit, indicated by the character A1, in room 465 (R465) and
it is the area temperature sensor (ART). She should provide
the parse as: BLDA1R465__ART : (site, BLD, const), (ahu, A,
const), (ahuRef6, 1, var), (zone, R, const), (zoneRef, 465,
var), (zone air temp sensor, ART, const). The site field’s
value is BLD, which is not specific to that particular sensor
tag. Hence, the expert should mark it as a constant. On
the other hand, the value of the zoneRef field is specific to
that sensor, and hence should be marked as variable.
Sample Output: The synthesis technique should be able

to identify the learned fields in a new tag automatically. For
example, given the tag BLDA5R577A__ART, it should output
the set of tuples: BLDA5R577A__ART : (site, BLD), (ahu,A),
(ahuRef,5), (zone,R), (zoneRef,577A), (zone air temp sensor,
ART, const). If there exists a portion of the tag for which
the synthesis technique has not yet received an example, it
should remain unmapped to any field-value pair.
We term each of these tuples as a qualification, because

it qualifies a set of alphanumeric characters into field-value
pairs in a common namespace. A tag is fully qualified, if
every alphanumeric character in it was correctly qualified
by the set of outputted field-value pairs. The goal of the
expert should be to use fields from the set of markers and
idioms defined in Project Haystack [1] ( a schema trying
to normalize building metadata ). There might be cases
where the correct field (such as specific alarms, etc) is not
part of the Haystack taxonomy. In these cases, we expect
the expert to use an easily understandable long-form field,
which is consistent7 across the entire building.
Synthesis technique overview (within each clus-

ter8) : The high-level aim of the technique is to learn two
4so that strings with a higher number of common coordi-
nates would be clustered together
5We set the threshold to 0 in our experiments
6ahuRef, zoneRef are idioms from the Haystack taxonomy
7This can be achieved by presenting the expert a set of fields
that has already been used in a that building to qualify a
particular substring.
8the clusters formed in Section 3.1



sets of information from the given input-output examples
— (a) which fields are applicable on a particular sensor tag,
and (b) what is the set of regular expressions that transform
the tag to the value of the corresponding field.
From each user-provided input-output example, and for

each field in the user’s example transformation, the set of
all expressions from the language (shown in Figure 2), that
could extract the required field’s value is computed. If there
are multiple input-output examples for the same field, the
substring extraction rules of the multiple examples are in-
tersected to obtain a more concise set of expressions. If the
substring extraction rules cannot be intersected, they are
maintained as two disjoint sets, which we shall hereby term
as a partitions.
Finally, for each field and each disjoint set of extraction

rules/regular expressions therein, a classifier in the form of
If Then ... Else statements is built, where the conditions
are boolean in the Disjunctive Normal Form (DNF)9. These
classifiers dictate whether a particular field is applicable to a
particular sensor tag, and which regular expression partition
should be applied to it. Thus, we can independently consider
each field to be a potential output for a sensor tag. If a field
is deemed to be applicable by its classifier, then the value
of that field would be generated by the regular expressions
synthesized by our technique.
Learning a classifier for each field separately has two ad-

vantages. The classifier is able to identify and extract fields
from other sensor tags, irrespective of the formatting of the
rest of the tag. Suppose two zone temperature sensors have
the tags BLDA1R465__ART (expansion described above) and
BLD_300___ART : (site, BLD), (zoneRef, 300), (zone air temp
sensor, ART) . In both cases, the first three characters de-
notes the value of the site field, and the substring ART de-
notes that it was a zone air temp sensor. Learning classifiers
for the fields site and zone air temp sensor would enable us
to gain useful information by automatically applying these
fields on the second sensor, even though we might not know
its zoneRef. Thus, we are able to transform as much of the
metadata as possible without having to depend on another
example from the expert.
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Figure 2: Language for learning substring extraction

The language : The language is designed to take into
account various possible metadata encodings that can occur
in sensor tags. We assume that the substring corresponding
to the value of a field can be obtained by either (a) extract-
ing substrings between two constant indices, (b) extracting
the substring between two other fields or regular expressions,
9same technique as in [11]

and (c) as a constant width substring if the left index is iden-
tified. The classifiers, which are constructed to determine
whether a particular field is applicable on a sensor’s tag, is
based on the general format of the string — (a) whether a
particular regular expression occurs at a particular index, or
(b) how many times a particular regular expression occurs
in the sensor tag.
The top level expression of the language is the classifier

— the If bi Then ei structure, which applies the substring
expression ei to the input only if it matches the boolean
expression bi. The boolean function is in the Disjunctive
Normal Form and is composed of predicates of the form
Occurs(vi, r, k) , which evaluates to true, iff the input vi

has k occurrences of the regular expression r, or
OccursAtPos(vi, r, c) which evaluates to true iff the input
vi has a regular expression r which occurs at index c.
The Substring expression SubString(vi, p1, p2), evaluates

to the substring between positions p1 and p2 of the string vi.
Constant(k) denotes the integer position k in the substring.
A position expression PrecedeSucceed(r1, r2, c) when ap-
plied on a string s evaluates to an integer position t in the
subject string s such that r1 matches some suffix s[0..t] and
r2 matches some prefix of s[t...l] (where l = Length(s)).
Also, t is the cth such match starting from the left end
of the string. If such an position t does not exist in the
string, this operator fails. ConstantWidth(k) is an opera-
tor which indicates a constant offset index from the position
p1. The regular expressions are either just a single token τ ,
or a token sequence, Tokens(τ1..τn), or ε (which matches
the empty string). The tokens τ comprise of a single token
to denote alphabetic characters ( referred to as AlphTok) ,
one for numeric characters (referred to as NumTok), one for
each special character, and one for each constant value en-
tered by the user. The output is obtained by applying the
resultant SubString(vi, p1, p2) operation.
We provide a couple of examples to elucidate how the

field-value extraction technique works.
Example 1. Tag : BLDA1R465__ART, desired output value
: ART (for the field zone air temperature sensor).
Possible programs synthesized: SubString(s, Constant(11),
Consant(14)), or
SubString(s, PrecedeSucceed(UnderscoreToken, ART,1),
ConstantWidth(3)) .
Example 2. Suppose the synthesis algorithm has seen
two examples (a) BLDA1R465__ART, for which the value for
field ahuRef is 1 and
(b) BLD_300___ART, in which the field ahuRef does not exist,
and hence should not be applied.
Possible programs synthesized to extract the value of the
field zoneRef is : If b1 Then e1, where b1 = OccursAtPos(s,
(A), 3), e1 = Substring(s, Constant(4), ConstantWidth(1)).
This program ensures that the field ahuRef is only applied
to sensor metadata similar to the former, and not to the
latter.
Token Set:We increase the expressive power of the regu-

lar expressions by having certain building-specific tokens in
addition to the normal alphabetic, numeric and special char-
acter tokens. Different conventions of sensor naming from
building to building precludes us from having an a priori
set of regular expression tokens. Standard regular expres-
sion tokens such as alphabet, numeric and special character



tokens are not expressive enough to differentiate between
different tags.
Example 3. To illustrate the problem, consider the ex-
amples from our test dataset, in which the first sensor is a
status indicator connected to supply fan 4, while the second
is a variable air volume unit airflow sensor in room 5871.
Tag 1 : BLDA4S1831_STA : [ (site, BLD, const), (ahu, A,

const), (ahuRef,4, var), (supply fan,S, const), (supply fan-
Ref,1831, var), (status point,STA,const) ] ; and
Tag 2: BLDA3R5871_VAV : [ (site, BLD, const), (ahu, A,

const), (ahuRef, 3, var), (zone, R, const), (zoneRef, 5871,
var), (vav, VAV, const) ]
Both these sensor names have the exact same arrangement

of numeric and alphabetic characters, and special symbols,
and no classifier comprising only alphanumeric and special
characters would be able to discern between the two. This
can result in erroneous extra fields being applied to sensor
names.
To solve this problem, and get a more expressive set of

tokens, we utilize the values marked as constant in the ex-
amples provided by the expert as special tokens for the reg-
ular expressions to be generated from that example, in ad-
dition to the standard regular expression tokens. Thus, the
tag BLDA4S1831_STA is treated as a set of tokens — (BLD),
(A), NumTok, (S), NumTok, NumTok, NumTok, NumTok
,UnderscoreTok, (STA). Thus, we can utilize a different list
of tokens for each building. The list of tokens increase as
the expert gives more examples. Note that the new tokens
provide enough expressibility for the regular expressions to
differentiate between the two input tags BLDA4S1831_STA,
and BLDA3R5871_VAV.

3.3 Syntactic Example Selection
We choose the cluster10 with the maximum number of

not-yet-fully qualified sensors, and choose one of them as the
next example to present to the user. We evaluated four dif-
ferent techniques to choose an unqualified sensor from that
cluster, the results of which are presented in our evaluation
(Section4.3).

• Random: Select an example at random.
• MinLeft : Select the example with the minimum tag
length left to qualify. The intuition is to complete
partial parse of sensors.

• MaxLeft : Select the example with the maximum tag
length left to qualify. The intuition is to help the syn-
thesis technique cover the space of unseen fields (i.e
the long tail in Figure 4).

• SameLeft : Select an example with the most frequent
unqualified substring. This method seeks to find a
commonly occurring field.

3.4 Data-driven Example Selection
Often the same sensor types in a building are specified

in the form of multiple different schemas. This may occur
because of mistakes on part of the vendor, later addition
of such sensors, etc. For instance, zone temperature sen-
sors in Building 1 in our testbed was encoded in 6 disparate
schemas, comprising of 78%, 11%, 6%, 2% , 2% and 1% of
the sensors. It is unlikely that a purely syntactic example
selection method will happen upon the tags with rare en-
codings. In contrast, because the characteristics in the as-
sociated data of sensors of the same type tend to be similar,

10described in Section 3.1

data-based selection can identify the rare-encoding sensors
as being similar to sensors with a more common encoding,
and present one of these rare examples to the expert for
parsing.
To utilize this approach, an expert should specify which

are the sensor types the application needs (henceforth termed
as Required Sensors). Our technique first transforms each
sensor stream into two new data streamsM and V that con-
tain the running median and variance values of the original
data stream, using a 45-minute long sliding window. The
length of the window is set to 45 minutes to smooth over any
transient phenomena and noises. Then, we collapse these
new streams by computing theminimum, maximum, median
and variance of each and the two streams become the fol-
lowing 8-tuple: [min(M),max(M),median(M), var(M),
min(V ),max(V ),median(V ), var(V )].11

This 8-tuple is then used as a feature vector to train a
random forest classifier based on sensors which have already
been fully qualified, and to classify the yet-unqualified sen-
sors. We choose a random forest classifier because it is an
ensemble learning algorithm which is more robust to noise
and in general outperforms other learning techniques like
SVM or linear regression. We choose the sensor which the
classifier classified as a required sensor with maximum like-
lihood and select that example be parsed by the expert.

3.5 Running Portable Building Applications
We study three important applications, that with normal-

ized metadata can run portably across buildings — Finding
Rogue Zones, Finding Zones with Stuck Dampers, and Find-
ing Inefficient Air Handling Units.

1. Finding Rogue Zones : A thermal zone is rogue if its air
temperature is constantly above its required setpoint,
i.e it requires constant cooling. Rogue zones are typ-
ically caused by high thermal load, incorrect setpoint
of faulty sensors, and should be rectified before im-
plementing further sophisticated efficiency techniques.
Rogue zones are an artifact of poor planning or wrong
setpoints, and can be fixed if brought to the attention
of a building manager. This application queries for
sensors having the zone air temp sensor field, and for
each such sensor, queries for a sensor with the zone air
temp setpoint field having the same field-value for the
zoneRef field, and checks whether the temperature is
always more than its respective setpoint (factoring in
a tolerance factor of 2F).

2. Finding Stuck Dampers: Finding zones where the dampers
are stuck, i.e they do not modulate the amount of
chilled air entering a zone. This application queries for
all sensors with the field zone damper and the corre-
sponding zone number (zoneRef), and checks whether
its data stream remains constant or shows any varia-
tion.

3. Finding Inefficient Air Handling Units (AHUs): An
AHU is considered “inefficient” if it serves rogue zones
as well as over-cooled zones. Typically, a hot rogue
zone drives the AHU to supply air that is too cold, re-
sulting in other zones supplied by the same air handler

11Described in more detail in [12]. In our experiments, we
the same one week time window of data from the month of
July for all sensors.



always being too cold and uncomfortable. Identify-
ing such AHUs may lead to making some over-cooled
zones more comfortable. This application first com-
putes whether a zone is over-heated or over-cooled us-
ing the same technique as the Rogue Zone application,
and then queries for ahuRef (the air handling unit ID)
field of each over-heated rogue zone, and checks if any
of the other zones served by the same air handling unit
is over-cooled. This application requires the same sen-
sors as the Rogue Zone application, but requires an
extra ahuRef relationship between the zones.

4. EVALUATION
We first evaluate the advantage of our clustering approach

(4.2), and compare convergence with existing spreadsheet
synthesis techniques. We next evaluate the effectiveness and
convergence of our algorithm for different syntactic exam-
ple selection mechanisms(4.3). We then compare and con-
trast the efficacy of the syntactic example selection method
(4.4) to the data-driven example selection method (4.5) to
parse enough sensors to run a particular application, follow-
ing which we report the results of the portable applications
on the buildings in our testbed (4.6).

4.1 Experiment Setup
We manually ground truth-ed all sensor metadata in three

buildings with BMS’ installed by different vendors, having
1586, 2522 and 186512 sensors respectively. We simulate the
role of the expert in our experiments. When the simulated
expert is asked for an parse, it consults the ground truth
and provides the correct parse. A sensor tag is considered
fully qualified if (a) the correct fields and field-values are ex-
tracted by the synthesized rules (b) No extra incorrect field
is identified, and (c) the field-values explain every alphanu-
meric character of the sensor tag.

4.2 Clustering
We evaluate the number of expert examples required for

full qualification of all sensors in a building with and without
apriori syntactic clustering. With clustering, the synthesized
rules from the expert’s parsed example are only applied to
the cluster the example is in. Without clustering, the syn-
thesized rules are applied to all sensors. We present the
results from Building 3 in our dataset. We also compare the
results to the parse generated by the spreadsheet synthesis
algorithm presented in [11] (Flash-Fill).
Figure 3 shows the rate of full qualification in Building 3.

Without clustering there is a sharp drop in the number of
sensors fully qualified because erroneous fields start getting
applied to sensor tags which were previously fully qualified.
Figure 4 provides the intuition for this behavior. In all the
buildings, a few fields (about 20 in each building) are appli-
cable on a lot of sensors13, while there is a long tail of fields
applicable only to a handful of sensors. In the absence of
clustering, the synthesis technique over-generalizes rules for
these rare or erroneous fields. With clustering, 100% of the
sensors are fully qualified. The apriori clustering step avoids

12we did not have access to sensor data for this building
13This is pretty common in commercial buildings, where a
majority of the sensors are related to zone information.
Thus, fields such as zone temp setpoint, zone airflow, etc
are very common
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Figure 3: Advantage of apriori clustering in Building 3 :
Rules are not over-generalized
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Figure 4: Percentage of sensor names (tags) each field ap-
pears in. The x-axis is sorted according to the frequency of
occurrence of a field

over-generalization of the synthesized rules by restricting the
rules to the cluster in which a particular example parsed by
the expert lies. The spreadsheet-based synthesis technique
(Flash-Fill) fails after 10 examples, because its underlying
language and tokens is not robust enough to disambiguate
the large number of fields.
Building 1 also showed a drop in the number of fully quali-

fied sensor tags after 100 examples, settling at full qualifica-
tion of 90% of the sensors. Building 2’s sensors’ schemas
were much less noisy, and our synthesis technique could
parse all sensor tags without the need of clustering (These
results are not presented).

4.3 Syntactic Example Selection
We now study the selection methods (described in Sec-

tion 3.3) used to select which example the expert should
parse following the initial clustering.
Figure 5 shows the rate of sensor qualification for each of

the four example selection methods on all buildings. With
the exception of MinLeft in Building 1, all the selection
methods qualify sensors at the same rate — they correctly
classify the most frequently occurring sensors within a hand-
ful of examples. With addition of more examples, the rate
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(a) Building 1
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(b) Building 2
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Figure 5: Sensor qualification rate for the three buildings. The Random generator achieves 70% full sensor name qualification
within 24 examples for Building 1, 15 examples for Building 2 and 43 examples for Building 3. It takes substantially more
examples for Building 3 because its subsystems had no similarity in metadata because they were installed by different vendors.

of new sensors fully qualified decrease because the synthesis
technique starts encountering obscure fields which are not
applicable widely. MinLeft performs poorly for Building 1
because its metadata is very noisy, and the approach gets
stuck trying to fully qualify idiosyncratic sensors with ob-
scure fields.
Thus, the convergence of the synthesis technique (i.e its

ability to fully qualify all sensors) is not affected by decision
of the example selection criteria. Also, the apriori clustering
enables all the four selection criteria to quickly qualify the
most frequently occurring sensors, since all of them seek out
examples from the biggest clusters first.
All following studies use the SameLeft method when per-

forming syntactic selection.
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Figure 6: Rate of full qualification of required sensors for
the Rogue Zone application on Building 1 using sameLeft
example selection method. (P) denotes number of required
sensors fully qualified (positive), N shows number of unre-
quired sensors fully qualified(negative), UP shows the num-
ber of required sensors yet to fully-qualified (unkown posi-
tive), andUN shows the number of non-required sensors yet
to be fully-qualified (unkown negative). The dotted vertical
line shows the steps in which a remaining required sensor
example was presented to the expert.

4.4 Application Oriented Qualification with Syn-
tactic Example Selection

We present the number of examples required to obtain
full-qualification of all sensors for the Rogue Zone applica-
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Figure 7: Rate of full qualification for Rogue Zone applica-
tion in Building 1 using data-driven example selection after
5 steps of syntactic example selection. P,N,UN andUP is
defined in Figure 6. TP indicates true-positive required sen-
sors that have been labelled by the data-driven procedure at
that step. TN shows the number of true negative required
sensor identifications made by our data-driven algorithm.
In this case, UP is the same as false negatives and UN
same as false positives, but this is unknown to the data-
driven classifier. The dotted vertical line shows at which
step a remaining required sensor example was presented to
the expert.

tion in Building 1 (the other results are similar, except when
stated explicitly). The Rogue Zone application’s set of re-
quired sensors are sensors with the fields zone temp sensor
or zone temp setpoint. In Building 1 there are 462 such
sensors, and their tags are in 10 different schemas, some of
which are very frequent, while others not so.
Figure 6 shows that 147 examples are required to fully

qualify all the required sensors for the Rogue Zone appli-
cation (compared to 178 examples required for full qualifi-
cation of all sensors). The first two examples fully qualify
the required sensors (denoted by P in the Figure) with the
most frequent schemas. Required sensors encoded in more
obscure schemas with infrequent fields require more exam-
ples because the aim of the syntactic selection method is to
select examples from large clusters. As the expert parses
more examples, the number of fully qualified non-required
(N) sensors increase steadily. Even though fewer expert



examples are required for application-oriented qualification,
the number of examples required is still prohibitively large
to enable easy deployment of the Rogue Zone application.
The number of examples required to fully qualify all sen-

sors for the Rogue Zone application on Building 2 was 67
(compared to 149 examples for qualifying all sensors). Sim-
ilarly the Identifying Stuck Dampers application took 137
and 1 example for Buildings 1 and 2 respectively (all dampers
in Building 2 were encoded with the same schema).

4.5 Application-Oriented Qualification with Data-
Driven Example Selection

We now evaluate the number of examples required to fully
qualify sensors for the same application and building as
in the previous experiment (i.e Rogue Zone application on
Building 1). We use the syntactic selection method to se-
lect the first five examples, so that the data-driven classifier
has positive and negative instances in its training set, and
thereon apply our data-driven classifier, and select the max-
imum likelihood required sensor to present to the expert for
parsing.
Figure 7 shows that only 24 expert examples are required

to obtain full qualification of all required sensors. After step
5, the data-driven classifier has 356 positive and 472 negative
examples of fully qualified sensors in its training set. Out of
the remaining 758 sensors (its test set, out of which 106 are
required sensors), it classifies 231 sensors as required sensors,
out of which 102 are true positive. It selects the example
which it has classified as required with maximum likelihood.
Thus, data-driven example selection (after 5 steps of syn-

tactic example selection) leads to a 6x reduction in the num-
ber of expert examples required, making it feasible to deploy
this application on this building within a few minutes.
However, one cannot apply the data-driven technique un-

til the syntactic technique has identified at least one posi-
tive example for each required sensor. Figure 8 shows the
total required examples required14 for full qualification of
all required sensors for the Rogue Zone and Stuck Dampers
application as a function of the initial number of syntactic
example selections for Buildings 1 and 2. In general, fewer
syntactic steps gave better results. This result was a sur-
prise to us, because our intuition was that our algorithm
would need to perform several syntactic steps to build up
an adequate training set for the data-driven classifier. How-
ever, the SameLeft syntactic selection method always chose
the first few example in a way to provide a sufficiently large
training set for the data-driven example selection method
to progress. Building 2’s dampers were encoded in the same
schema, and hence all required sensors were parsed by the
first syntactic example.
Note that in this experiment, our algorithm stops when

the last required sensor is qualified. In practice, a heuristic
would be required to infer that further positive examples
are unlikely to be obtained. Thus, a small number of of
additional steps would be required ensure convergence.

4.6 Results of Applications
We applied our unmodified applications for finding rogue

zones, stuck dampers and inefficient AHUs to Buildings 1
and 2 (Table 1), after the expert had parsed all the required
sensors.

14the sum of data-driven example selection steps and syntac-
tic example selection steps
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Figure 8: Total number of expert examples required to qual-
ify all the required sensors for an application, as a function of
the number of initial syntactic selection steps (the remaining
steps have data-driven example selection).

Results : We were able to identify all the zones and
dampers in the two buildings. Building 1 was the more in-
efficient building with 5 hot rogue zones, and 17 over-cooled
zones, and 4 zones having stuck dampers. We identified two
inefficient air handling units in Building 1 which were try-
ing to cool down extremely hot electrical closets and in the
process over-cooling multiple office spaces. The inefficient
AHU application could not run on Building 2 because none
of the sensors encoded the relationship between zones and
their corresponding AHUs.

Table 1: Application Results

Building
1

Building
2

Number of Thermal Zones 201 78
Number of Rogue Zones 5 2
Number of Over-cooled Zones 17 0
Number of Zones with Dampers 175 55
Number of Zones with Stuck Dampers 5 0
Number of Air Handling Units 4 NA
Number of Inefficient AHUs 2 NA

5. CONCLUSION AND FUTURE WORK
In order to build meaningful applications at scale on dis-

parate building sensors, the metadata available to interpret
the data should be augmented and normalized to a common
namespace to the extent possible, which helps capture the
semantic relationships between them.
We developed an approach which can normalize the prim-

itive metadata of each building to field/field-value pairs to
a desired common namespace using examples from a build-
ing expert (e.g the facilities manager, often the only person
familiar with the primitive metadata). We demonstrated
that our synthesis technique is robust so that it achieves full
sensor qualification for all sensors for 3 different BMS sys-
tems, even when presented with obscure and noisy tags, and
takes very few examples to fully qualify the most commonly
occurring sensors ( 24, 15 and 43 examples for the three
buildings in our testbed for qualifying 70% of the tags). We
used the relationships inferred in the transformed metadata
to run three unmodified analytics applications in two build-
ings whose BMS-s had different apriori metadata schemas.
The data-driven example selection method reduces the ef-
fort to deploy a new application in an unknown building.
The three applications could be deployed in under 30 ex-



amples (maximum half-an-hour of work) from the building
manager.
As part of our future work, we want to perform usabil-

ity studies with human experts, to devise intuitive ways to
enable them navigate through the large building datasets
(related research efforts include [3, 16]) and come up with
techniques to make our technique robust to errors in an ex-
pert’s parse. Also, we would like to explore if adapting the
syntactic clustering of sensors based on examples parsed by
the expert reduces the number of examples required.
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